Practical Application Study for Precision Improvement Plan for Energy Storage Devices Based on Iterative Methods
Jaewan Suh,
Minhan Yoon and
Seungmin Jung
Additional contact information
Jaewan Suh: Department of Electrical Engineering, Dongyang Mirae University, Seoul 08221, Korea
Minhan Yoon: Department of Electrical Engineering, Kwangwoon University, Seoul 01897, Korea
Seungmin Jung: Department of Electrical Engineering, Hanbat National University, Daejeon 305-719, Korea
Energies, 2020, vol. 13, issue 3, 1-13
Abstract:
In the aspect of power grid, attention is being given to conditions of environmental variation along with the need for precise prediction strategies based on control elements in recently designed large-scale distributed generation systems. With respect to distributed generators, an operational prediction system is used to respond to the negative impacts that could be generated. As an active response plan, efforts are being made by system operators to cover fluctuations with utilization of battery-based storage devices. Solar or ocean energy that shares electrical structure with an energy storage system has recently being seen as a combined solution. Although this structure is supported by a state analysis plan, such methods must be performed within the range where the response is possible under consideration of the power requirements of the electronic devices. This paper focuses on an iterative based solution for enhancing response of storage that included in DC generation system, to check its availability in terms of possible calculation load. A previous storage management plan was utilized and tested using a commercially available transient electromagnetic simulation tool that focused on possible delays. Case studies were performed sequentially on the time delays based on utilizable inverter topologies.
Keywords: PV diagnosis; ESS application; DC power flow; calculation load; iterative methods (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
https://www.mdpi.com/1996-1073/13/3/656/pdf (application/pdf)
https://www.mdpi.com/1996-1073/13/3/656/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:13:y:2020:i:3:p:656-:d:316214
Access Statistics for this article
Energies is currently edited by Ms. Agatha Cao
More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().