EconPapers    
Economics at your fingertips  
 

Voltage Stability Margin Index Estimation Using a Hybrid Kernel Extreme Learning Machine Approach

Walter M. Villa-Acevedo, Jesús M. López-Lezama and Delia G. Colomé
Additional contact information
Walter M. Villa-Acevedo: Departamento de Ingeniería Eléctrica, Facultad de Ingeniería, Universidad de Antioquia, Calle 70 No 52-21, Medellín 050010, Colombia
Jesús M. López-Lezama: Departamento de Ingeniería Eléctrica, Facultad de Ingeniería, Universidad de Antioquia, Calle 70 No 52-21, Medellín 050010, Colombia
Delia G. Colomé: Instituto de Energía Eléctrica, Facultad de Ingeniería, Universidad Nacional de San Juan, Avenida Libertador General San Martín 1109 (Oeste), San Juan 5400, Argentina

Energies, 2020, vol. 13, issue 4, 1-19

Abstract: This paper presents a novel approach for Voltage Stability Margin (VSM) estimation that combines a Kernel Extreme Learning Machine (KELM) with a Mean-Variance Mapping Optimization (MVMO) algorithm. Since the performance of a KELM depends on a proper parameter selection, the MVMO is used to optimize such task. In the proposed MVMO-KELM model the inputs and output are the magnitudes of voltage phasors and the VSM index, respectively. A Monte Carlo simulation was implemented to build a data base for the training and validation of the model. The data base considers different operative scenarios for three type of customers (residential commercial and industrial) as well as N-1 contingencies. The proposed MVMO-KELM model was validated with the IEEE 39 bus power system comparing its performance with a support vector machine (SVM) and an Artificial Neural Network (ANN) approach. Results evidenced a better performance of the proposed MVMO-KELM model when compared to such techniques. Furthermore, the higher robustness of the MVMO-KELM was also evidenced when considering noise in the input data.

Keywords: kernel extreme learning machine algorithm; machine learning techniques; near real time; voltage stability assessment; voltage stability index (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2020
References: View complete reference list from CitEc
Citations: View citations in EconPapers (5)

Downloads: (external link)
https://www.mdpi.com/1996-1073/13/4/857/pdf (application/pdf)
https://www.mdpi.com/1996-1073/13/4/857/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:13:y:2020:i:4:p:857-:d:321131

Access Statistics for this article

Energies is currently edited by Ms. Agatha Cao

More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jeners:v:13:y:2020:i:4:p:857-:d:321131