EconPapers    
Economics at your fingertips  
 

Characterization of Fast Pyrolysis Bio-Oil from Hardwood and Softwood Lignin

Zahra Echresh Zadeh, Ali Abdulkhani and Basudeb Saha
Additional contact information
Zahra Echresh Zadeh: School of Engineering, London South Bank University, London SE1 0AA, UK
Ali Abdulkhani: Department of Wood and Paper Sciences and Technology, Faculty of Natural Resources, University of Tehran, Karaj 1417466191, Iran
Basudeb Saha: School of Engineering, London South Bank University, London SE1 0AA, UK

Energies, 2020, vol. 13, issue 4, 1-14

Abstract: The depletion of fossil fuel reserves and the increase of greenhouse gases (GHG) emission have led to moving towards alternative, renewable, and sustainable energy sources. Lignin is one of the significant, renewable and sustainable energy sources of biomass and pyrolysis is one of the most promising technologies that can convert lignocellulosic biomass to bio-oil. This study focuses on the production and characterization of bio-oil from hardwood and softwood lignin via pyrolysis process using a bench-scale batch reactor. In this study, a mixed solvent extraction method with different polarities was developed to fractionate different components of bio-crude oil into three fractions. The obtained fractions were characterized by using gas chromatography and mass spectrometry (GCMS). The calculated bio-oil yields from Sigma Kraft lignin and Chouka Kraft lignin were about 30.2% and 24.4%, respectively. The organic solvents, e.g., toluene, methanol, and water were evaluated for chemical extraction from bio-oil, and it was found that the efficiency of solvents is as follows: water > methanol > toluene. In both types of the bio-oil samples, phenolic compounds were found to be the most abundant chemical groups which include phenol, 2-methoxy, 2-methoxy-6-methylphenol and phenol, 4-ethyl-2-methoxy that is due to the structure and the originality of lignin, which is composed of phenyl propane units with one or two methoxy groups (O-CH 3 ) on the aromatic ring.

Keywords: bioenergy; bio-oil; characterization; extraction; lignin; pyrolysis (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (5)

Downloads: (external link)
https://www.mdpi.com/1996-1073/13/4/887/pdf (application/pdf)
https://www.mdpi.com/1996-1073/13/4/887/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:13:y:2020:i:4:p:887-:d:321606

Access Statistics for this article

Energies is currently edited by Ms. Agatha Cao

More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jeners:v:13:y:2020:i:4:p:887-:d:321606