EconPapers    
Economics at your fingertips  
 

Serial Laboratory Effective Thermal Conductivity Measurements of Cohesive and Non-cohesive Soils for the Purpose of Shallow Geothermal Potential Mapping and Databases—Methodology and Testing Procedure Recommendations

Aleksandra Łukawska, Grzegorz Ryżyński and Mateusz Żeruń
Additional contact information
Aleksandra Łukawska: Polish Geological Institute–National Research Institute, Rakowiecka 4 Street, 00-975 Warsaw, Poland
Grzegorz Ryżyński: Polish Geological Institute–National Research Institute, Rakowiecka 4 Street, 00-975 Warsaw, Poland
Mateusz Żeruń: Polish Geological Institute–National Research Institute, Rakowiecka 4 Street, 00-975 Warsaw, Poland

Energies, 2020, vol. 13, issue 4, 1-20

Abstract: The article presents the methodology of conducting serial laboratory measurements of thermal conductivity of recompacted samples of cohesive and non-cohesive soils. The presented research procedure has been developed for the purpose of supplementing the Engineering–Geology Database and its part–Physical and Mechanical Properties of Soils and Rocks (abbr. BDGI-WFM) with a new component regarding thermal properties of soils. The data contained in BDGI-WFM are the basis for the development of maps and plans for the assessment of geothermal potential and support for the sustainable development of low enthalpy geothermal energy. Effective thermal conductivity of soils was studied at various levels of water saturation and various degrees of compaction. Cohesive soils were tested in initial moisture content and after drying to a constant mass. Non-cohesive soils were tested in initial moisture, fully saturated with water and after drying to a constant mass. Effective thermal conductivity of non-cohesive soils was determined on samples mechanically compacted to the literature values of bulk density. Basic physical parameters were determined for each of the samples. In total, 120 measurements of thermal conductivity were carried out, for the purposes of developing the guidelines which allowed statistical analysis of the results. The results were cross-checked with different measuring equipment and with the literature data.

Keywords: thermal properties of soil; transient line source method; ground source heat exchangers; geological mapping and databases; low enthalpy geothermal energy (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.mdpi.com/1996-1073/13/4/914/pdf (application/pdf)
https://www.mdpi.com/1996-1073/13/4/914/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:13:y:2020:i:4:p:914-:d:321973

Access Statistics for this article

Energies is currently edited by Ms. Agatha Cao

More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jeners:v:13:y:2020:i:4:p:914-:d:321973