Analysis of the Thermodynamic Consistency of the Richardson–Duhmann Model for Thermionic Converters
Antonio Martí
Additional contact information
Antonio Martí: Instituto de Energía Solar, Universidad Politécnica de Madrid, Escuela Técnica Superior de Ingenieros de Telecomunicación, Ciudad Universitaria sn, 28040 Madrid, Spain
Energies, 2020, vol. 13, issue 5, 1-14
Abstract:
In this work, we develop the general theory for analyzing the thermodynamic consistency of the Richardson–Duhmann model for vacuum thermionic energy converters. In addition to the electron fluxes from emitter to collector and vice versa, we calculate the energy and entropy fluxes associated to them. The calculation of the entropy fluxes is what allows us to conclude that the model is consistent by verifying that both at the emitter and at the collector the entropy generation rate is positive. In the process, we review the Richardson–Duhmann model in order to assure that the assumptions we make for calculating the energy and entropy fluxes are consistent. We also generalize the Richardson–Duhmann model in order to consider Fermi–Dirac statistics.
Keywords: thermionics; thermodynamics; Richardson–Duhmann (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2020
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
https://www.mdpi.com/1996-1073/13/5/1087/pdf (application/pdf)
https://www.mdpi.com/1996-1073/13/5/1087/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:13:y:2020:i:5:p:1087-:d:327025
Access Statistics for this article
Energies is currently edited by Ms. Agatha Cao
More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().