Power System Nonlinear Modal Analysis Using Computationally Reduced Normal Form Method
Nnaemeka Sunday Ugwuanyi,
Xavier Kestelyn,
Bogdan Marinescu and
Olivier Thomas
Additional contact information
Nnaemeka Sunday Ugwuanyi: Arts et Métiers Institute of Technology, Université de Lille, Centrale Lille, HEI, EA 2697, L2EP—Laboratoire d’Electrotechnique et d’Electronique de Puissance, F-59000 Lille, France
Xavier Kestelyn: Arts et Métiers Institute of Technology, Université de Lille, Centrale Lille, HEI, EA 2697, L2EP—Laboratoire d’Electrotechnique et d’Electronique de Puissance, F-59000 Lille, France
Bogdan Marinescu: Ecole Centrale de Nantes—Laboratoire des Sciences du Numérique de Nantes (LS2N), F-44000 Nantes, France
Olivier Thomas: Arts et Metiers Institute of Technology—Laboratoire d’Ingenierie des Systèmes Physiques et Numériques (LISPEN), F-59000 Lille, France
Energies, 2020, vol. 13, issue 5, 1-19
Abstract:
Increasing nonlinearity in today’s grid challenges the conventional small-signal (modal) analysis (SSA) tools. For instance, the interactions among modes, which are not captured by SSA, may play significant roles in a stressed power system. Consequently, alternative nonlinear modal analysis tools, notably Normal Form (NF) and Modal Series (MS) methods are being explored. However, they are computation-intensive due to numerous polynomial coefficients required. This paper proposes a fast NF technique for power system modal interaction investigation, which uses characteristics of system modes to carefully select relevant terms to be considered in the analysis. The Coefficients related to these terms are selectively computed and the resulting approximate model is computationally reduced compared to the one in which all the coefficients are computed. This leads to a very rapid nonlinear modal analysis of the power systems. The reduced model is used to study interactions of modes in a two-area power system where the tested scenarios give same results as the full model, with about 70% reduction in computation time.
Keywords: modal interaction; nonlinear modal analysis; power system analysis; reduced normal form (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
https://www.mdpi.com/1996-1073/13/5/1249/pdf (application/pdf)
https://www.mdpi.com/1996-1073/13/5/1249/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:13:y:2020:i:5:p:1249-:d:329850
Access Statistics for this article
Energies is currently edited by Ms. Agatha Cao
More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().