Prediction of Performance Variation Caused by Manufacturing Tolerances and Defects in Gas Diffusion Electrodes of Phosphoric Acid (PA)–Doped Polybenzimidazole (PBI)-Based High-Temperature Proton Exchange Membrane Fuel Cells
Vladimir Gurau and
Emory S. De Castro
Additional contact information
Vladimir Gurau: Department of Manufacturing Engineering, Georgia Southern University, Statesboro, GA 30458, USA
Emory S. De Castro: Advent Technologies, Inc., Cambridge, MA 02138, USA
Energies, 2020, vol. 13, issue 6, 1-14
Abstract:
The automated process of coating catalyst layers on gas diffusion electrodes (GDEs) for high-temperature proton exchange membrane fuel cells results inherently into a number of defects. These defects consist of agglomerates in which the platinum sites cannot be accessed by phosphoric acid and which are the consequence of an inconsistent coating, uncoated regions, scratches, knots, blemishes, folds, or attached fine particles—all ranging from ?m to mm size. These electrochemically inactive spots cause a reduction of the effective catalyst area per unit volume (cm 2 /cm 3 ) and determine a drop in fuel cell performance. A computational fluid dynamics (CFD) model is presented that predicts performance variation caused by manufacturing tolerances and defects of the GDE and which enables the creation of a six-sigma product specification for Advent phosphoric acid (PA)-doped polybenzimidazole (PBI)-based membrane electrode assemblies (MEAs). The model was used to predict the total volume of defects that would cause a 10% drop in performance. It was found that a 10% performance drop at the nominal operating regime would be caused by uniformly distributed defects totaling 39% of the catalyst layer volume (~0.5 defects/?m 2 ). The study provides an upper bound for the estimation of the impact of the defect location on performance drop. It was found that the impact on the local current density is higher when the defect is located closer to the interface with the membrane. The local current density decays less than 2% in the presence of an isolated defect, regardless of its location along the active area of the catalyst layer.
Keywords: phosphoric acid (PA)-doped polybenzimidazole (PBI)-based proton exchange membranes; high-temperature proton exchange membrane fuel cells (HT-PEMFC); prediction of performance variation caused by manufacturing tolerances and defects; mathematical model; six-sigma product specification (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2020
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
https://www.mdpi.com/1996-1073/13/6/1345/pdf (application/pdf)
https://www.mdpi.com/1996-1073/13/6/1345/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:13:y:2020:i:6:p:1345-:d:332385
Access Statistics for this article
Energies is currently edited by Ms. Agatha Cao
More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().