Impact of the Paleoclimate, Paleoenvironment, and Algae Bloom: Organic Matter Accumulation in the Lacustrine Lucaogou Formation of Jimsar Sag, Junggar Basin, NW China
Yuhan Jiang,
Dujie Hou,
Hang Li,
Ziming Zhang and
Ruibo Guo
Additional contact information
Yuhan Jiang: School of Energy Resources, China University of Geosciences, Beijing 100083, China
Dujie Hou: School of Energy Resources, China University of Geosciences, Beijing 100083, China
Hang Li: No.8 Oil Recovery Plant of PetroChina Changqing Oilfield Company, Xi’an 710016, China
Ziming Zhang: School of Energy Resources, China University of Geosciences, Beijing 100083, China
Ruibo Guo: School of Energy Resources, China University of Geosciences, Beijing 100083, China
Energies, 2020, vol. 13, issue 6, 1-23
Abstract:
Shale oil exploration has been a key area of onshore oil and gas exploration in China in recent years. In this study, organic geochemistry and element geochemistry are united to study the shale oil and source rock in the Lucaogou formation of Jimusar sag, in order to reveal the paleoclimate, paleoenvironment, source of organic matter, and factors affecting organic matter accumulation and shale oil generation. The shale oil in the study area is mainly accumulated in two strata with good reservoir properties and oiliness, known as the upper sweet spot and lower sweet spot. Indexes of biomarkers and sensitive elements revealed the warm and semi-arid paleoclimate during Lucaogou formation, and the water column was brackish to salty. Water stratification caused a suboxic to anoxic environment in the deep-water column and coincided with the anoxic photic zone phenomenon. Compared with the lower sweet spot, the more humid climate, deeper and fresher water, and stronger water stratification characterize the upper sweet spot during sedimentation. This made the photic zone with freshwater more suitable for the reproduction of algae in the upper sweet spot. Meanwhile, the organic matter was well-preserved in the anoxic zone. Volcanic ash caused algae bloom, which promoted primary productivity and ensured the supply of organic matter. The composition and distribution pattern of biomarkers prove that phytoplankton is the most important source of organic matter in the study area and the contribution of higher plants is insignificant. The relationship between parameters of paleoproductivity and the redox condition versus total organic carbon (TOC) suggests that compared with the preservation conditions, the input of organic carbon is the most important controlling factor of organic matter accumulation in the study area.
Keywords: shale oil; geochemistry; biomarkers; volcanic ash; aryl isoprenoids; brackish lacustrine water (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2020
References: View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
https://www.mdpi.com/1996-1073/13/6/1488/pdf (application/pdf)
https://www.mdpi.com/1996-1073/13/6/1488/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:13:y:2020:i:6:p:1488-:d:335377
Access Statistics for this article
Energies is currently edited by Ms. Agatha Cao
More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().