CFD Simulation of Aeration and Mixing Processes in a Full-Scale Oxidation Ditch
Thomas Höhne and
Tural Mamedov
Additional contact information
Thomas Höhne: Institute of Fluid Dynamics, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), 01328 Dresden, Germany
Tural Mamedov: Department of Chemical Engineering, The Polytechnic University of Milan, 20133 Milan, Italy
Energies, 2020, vol. 13, issue 7, 1-17
Abstract:
This study aims to build a computational fluid dynamics (CFD) model that can be used to predict fluid flow pattern and to analyse the mixing process in a full-scale OD. CFD is a widely used numerical tool for analysing, modelling and simulating fluid flow patterns in wastewater treatment processes. In this study, a three-dimensional (3D) computational geometry was used, and the Eulerian-Eulerian multiphase flow model was built. Pure water was considered as the continuous phase, whereas air was modelled as the dispersed phase. The Shear Stress Transport (SST) turbulence model was specified which predicts turbulence eddies in free stream and wall-bounded region with high accuracy. The momentum source term approach and the transient rotor-stator approach were implemented for the modelling of the submersible agitators. The hydrodynamic analysis was successfully performed for four different scenarios. In order to prevent the incorrect positioning of the submerged agitators, thrust analysis was also done. The results show that the minimum required water velocity was reached to maintain the solid particles suspended in the liquid media and adequate mixing was determined.
Keywords: CFD; multiphase flow; hydrodynamics; oxidation ditch (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2020
References: View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
https://www.mdpi.com/1996-1073/13/7/1633/pdf (application/pdf)
https://www.mdpi.com/1996-1073/13/7/1633/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:13:y:2020:i:7:p:1633-:d:340318
Access Statistics for this article
Energies is currently edited by Ms. Agatha Cao
More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().