Examining the Potential of a Random Forest Derived Cloud Mask from GOES-R Satellites to Improve Solar Irradiance Forecasting
Tyler McCandless and
Pedro Angel Jiménez
Additional contact information
Tyler McCandless: National Center for Atmospheric Research (NCAR), Boulder, CO 80305, USA
Pedro Angel Jiménez: National Center for Atmospheric Research (NCAR), Boulder, CO 80305, USA
Energies, 2020, vol. 13, issue 7, 1-15
Abstract:
In order for numerical weather prediction (NWP) models to correctly predict solar irradiance reaching the earth’s surface for more accurate solar power forecasting, it is important to initialize the NWP model with accurate cloud information. Knowing where the clouds are located is the first step. Using data from geostationary satellites is an attractive possibility given the low latencies and high spatio-temporal resolution provided nowadays. Here, we explore the potential of utilizing the random forest machine learning method to generate the cloud mask from GOES-16 radiances. We first perform a predictor selection process to determine the optimal predictor set for the random forest predictions of the horizontal cloud fraction and then determine the appropriate threshold to generate the cloud mask prediction. The results show that the random forest method performs as well as the GOES-16 level 2 clear sky mask product with the ability to customize the threshold for under or over predicting cloud cover. Further developments to enhance the cloud mask estimations for improved short-term solar irradiance and power forecasting with the MAD-WRF NWP model are discussed.
Keywords: solar power forecasting; machine learning; artificial intelligence; random forests; supervised learning; remote sensing (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)
Downloads: (external link)
https://www.mdpi.com/1996-1073/13/7/1671/pdf (application/pdf)
https://www.mdpi.com/1996-1073/13/7/1671/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:13:y:2020:i:7:p:1671-:d:340790
Access Statistics for this article
Energies is currently edited by Ms. Agatha Cao
More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().