EconPapers    
Economics at your fingertips  
 

A Multi-Agent Reinforcement Learning Framework for Lithium-ion Battery Scheduling Problems

Yu Sui and Shiming Song
Additional contact information
Yu Sui: 1812 Seville Way, San Jose, CA 95131, USA
Shiming Song: 1812 Seville Way, San Jose, CA 95131, USA

Energies, 2020, vol. 13, issue 8, 1-13

Abstract: This paper presents a reinforcement learning framework for solving battery scheduling problems in order to extend the lifetime of batteries used in electrical vehicles (EVs), cellular phones, and embedded systems. Battery pack lifetime has often been the limiting factor in many of today’s smart systems, from mobile devices and wireless sensor networks to EVs. Smart charge-discharge scheduling of battery packs is essential to obtain super linear gain of overall system lifetime, due to the recovery effect and nonlinearity in the battery characteristics. Additionally, smart scheduling has also been shown to be beneficial for optimizing the system’s thermal profile and minimizing chances of irreversible battery damage. The recent rapidly-growing community and development infrastructure have added deep reinforcement learning (DRL) to the available tools for designing battery management systems. Through leveraging the representation powers of deep neural networks and the flexibility and versatility of reinforcement learning, DRL offers a powerful solution to both roofline analysis and real-world deployment on complicated use cases. This work presents a DRL-based battery scheduling framework to solve battery scheduling problems, with high flexibility to fit various battery models and application scenarios. Through the discussion of this framework, comparisons have also been made between conventional heuristics-based methods and DRL. The experiments demonstrate that DRL-based scheduling framework achieves battery lifetime comparable to the best weighted-k round-robin (kRR) heuristic scheduling algorithm. In the meantime, the framework offers much greater flexibility in accommodating a wide range of battery models and use cases, including thermal control and imbalanced battery.

Keywords: lithium-ion battery; battery scheduling; KiBaM; thermal modeling; reinforcement learning (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)

Downloads: (external link)
https://www.mdpi.com/1996-1073/13/8/1982/pdf (application/pdf)
https://www.mdpi.com/1996-1073/13/8/1982/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:13:y:2020:i:8:p:1982-:d:346625

Access Statistics for this article

Energies is currently edited by Ms. Agatha Cao

More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jeners:v:13:y:2020:i:8:p:1982-:d:346625