Relative Free Energy Function and Structural Theory of Thermoeconomics
Antonio Valero and
César Torres
Additional contact information
Antonio Valero: CIRCE Institute, Universidad de Zaragoza, 50018 Zaragoza, Spain
César Torres: CIRCE Institute, Universidad de Zaragoza, 50018 Zaragoza, Spain
Energies, 2020, vol. 13, issue 8, 1-21
Abstract:
This paper explores the advantages of using relative free energy instead of exergy to build a mathematical theory of thermodynamic costs to diagnose malfunctions in thermal systems. This theory is based on the definition of a linearized characteristic equation that represents the physical behavior of each component. The physical structure of the system described by its energy interrelationships is called “primal”, and its derivatives are the costs and consumptions. The obtained costing structure is the mathematical “dual” of its primal. The theory explains why the F and P cost assessment rules and any other suggestion may (or may not be) rational under a given disaggregation scheme. A result of the theory is a new thermodynamic function, called the relative free energy , and a new parameter called deterioration temperature due to a component’s deterioration cause, characterized by a h-s thermodynamic trajectory describing the effects on the exiting stream. The relative free energy function allows for an exact relationship between the amount of used resources and the increase in entropy generation caused by the deterioration path of the component. This function allows the obtaining of, for the first time, an appropriate characteristic equation for a turbine and a new definition of efficiency that does not depend on the environment temperature but on its deterioration temperature. Also, costing with relative free energy instead of exergy may open a new path for more precise and straightforward assessments of component deteriorations.
Keywords: thermoeconomics; structural theory; characteristic equation; exergy cost theory; relative free energy; deterioration temperature; costing assessment; cost conservation equation; exergy dual/primal; thermoeconomic diagnosis (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
https://www.mdpi.com/1996-1073/13/8/2024/pdf (application/pdf)
https://www.mdpi.com/1996-1073/13/8/2024/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:13:y:2020:i:8:p:2024-:d:347428
Access Statistics for this article
Energies is currently edited by Ms. Agatha Cao
More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().