Effects Generated by the Magnetic Core Anisotropy of an Induction Motor
Adam Warzecha and
Witold Mazgaj
Additional contact information
Adam Warzecha: Institute of Electromechanical Energy Conversion, Cracow University of Technology, 31-155 Kraków, Poland
Witold Mazgaj: Institute of Electromechanical Energy Conversion, Cracow University of Technology, 31-155 Kraków, Poland
Energies, 2020, vol. 13, issue 9, 1-12
Abstract:
A theoretical analysis enables effects generated by the magnetic core anisotropy of an induction motor to be determined qualitatively. Relationships formulated between currents and magnetic flux linkages that are associated with three-phase stator windings enable the qualitative determination of spectra of currents or voltages of a typical induction motor. These relationships account for nonlinear and anisotropic magnetization characteristics of the motor core, both during idle running and motor starting. Based on these relationships, components of the amplitude Fourier spectra of symmetrical components of currents or voltages, which are useful in the diagnostics of stator or rotor core anisotropy, were selected. Field calculations were performed for the core of a two-pole 5.5 kW motor supplied by three-phase sinusoidal currents. The components of the induced voltage Fourier spectra in both the idle running and short-circuit state were similar to analogous components predicted based on theoretical studies. The components occurring in the spectra, which were obtained based on field calculations, were distinguished in the measured spectra of the symmetrical components of the phase currents. These components were applied to estimate representative current signal levels in the diagnostics of motor core anisotropy. Relative values of these signals did not exceed 60 dB; however, they were significant for assessing the internal asymmetry level of the motor stator or rotor core. The results of laboratory measurements confirmed the results of the theoretical analysis.
Keywords: induction motor; magnetic anisotropy; frequency analysis; diagnostics; motor current analysis (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2020
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
https://www.mdpi.com/1996-1073/13/9/2189/pdf (application/pdf)
https://www.mdpi.com/1996-1073/13/9/2189/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:13:y:2020:i:9:p:2189-:d:353075
Access Statistics for this article
Energies is currently edited by Ms. Agatha Cao
More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().