Nucleate Pool Boiling Heat Transfer from High-Flux Tube with Dielectric Fluid HFE-7200
Abhishek Kumar,
Kuo-Shu Hung and
Chi-Chuan Wang
Additional contact information
Abhishek Kumar: Department of Mechanical Engineering, National Chiao Tung University, Hsinchu 300, Taiwan
Kuo-Shu Hung: Green Energy & Environment Research Laboratories, Industrial Technology Research Institute, Zhudong 310, Taiwan
Chi-Chuan Wang: Department of Mechanical Engineering, National Chiao Tung University, Hsinchu 300, Taiwan
Energies, 2020, vol. 13, issue 9, 1-16
Abstract:
In the present experimental study, nucleate pool boiling heat transfer measurements of two high-flux tubes (sample A and sample B) were conducted at atmospheric pressure with HFE-7200 as the working fluid. Both high-flux tubes were made from a sintered Cu-Ni (high-flux) alloy powder. The porous high-flux surface was coated inside the test tube and it is tested within the heat flux ranging from 2.6 to 86 kW/m 2 . The major difference between sample A and sample B was the coating thickness, where sample B (0.6 mm) was much larger than that of sample A (0.07 mm). Both tubes showed about three times enhancement in heat transfer coefficient (HTC) when compared to plain tube. Even though sample B contained a higher HTC than sample A, it also revealed a faster level-off phenomenon regarding the HTC vs. wall superheat. The major parameter which characterizes the boiling performance of high-flux tube was the ratio of coating thickness to pore diameter which also yielded different trends upon HTC vs. wall superheat amid sample A and B. It was found that the porous based Nishikawa correlation can well predict the performance of sample A but not sample B. This is because the ratio of coating thickness to pore diameter is far outside the applicable range of the Nishikawa correlation. Hence, a modified Nishikawa correlation is proposed. The predicted capability of the proposed modified Nishikawa correlation against sample A and sample for HTC was within ±28% deviation. The standard mean deviation of the Nishikawa correlation with experimental data for sample A and sample B was 0.302 (12.48%) and 5.64 (73%), respectively.
Keywords: high-flux tube; porous surface; pool boiling; heat transfer coefficient (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2020
References: View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
https://www.mdpi.com/1996-1073/13/9/2313/pdf (application/pdf)
https://www.mdpi.com/1996-1073/13/9/2313/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:13:y:2020:i:9:p:2313-:d:354596
Access Statistics for this article
Energies is currently edited by Ms. Agatha Cao
More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().