Economics at your fingertips  

Forecasting Volatility of Energy Commodities: Comparison of GARCH Models with Support Vector Regression

Marcin Faldzinski (), Piotr Fiszeder () and Witold Orzeszko ()

Energies, 2020, vol. 14, issue 1, 1-18

Abstract: We compare the forecasting performance of the generalized autoregressive conditional heteroscedasticity (GARCH) -type models with support vector regression (SVR) for futures contracts of selected energy commodities: Crude oil, natural gas, heating oil, gasoil and gasoline. The GARCH models are commonly used in volatility analysis, while SVR is one of machine learning methods, which have gained attention and interest in recent years. We show that the accuracy of volatility forecasts depends substantially on the applied proxy of volatility. Our study confirms that SVR with properly determined hyperparameters can lead to lower forecasting errors than the GARCH models when the squared daily return is used as the proxy of volatility in an evaluation. Meanwhile, if we apply the Parkinson estimator which is a more accurate approximation of volatility, the results usually favor the GARCH models. Moreover, it is difficult to choose the best model among the GARCH models for all analyzed commodities, however, forecasts based on the asymmetric GARCH models are often the most accurate. While, in the class of the SVR models, the results indicate the forecasting superiority of the SVR model with the linear kernel and 15 lags, which has the lowest mean square error (MSE) and mean absolute error (MAE) among the SVR models in 92% cases.

Keywords: energy commodities; futures contracts; volatility; forecasting; GARCH models; support vector regression; machine learning (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: Track citations by RSS feed

Downloads: (external link) (application/pdf) (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link:

Access Statistics for this article

Energies is currently edited by Prof. Dr. Enrico Sciubba

More articles in Energies from MDPI, Open Access Journal
Bibliographic data for series maintained by XML Conversion Team ().

Page updated 2021-06-16
Handle: RePEc:gam:jeners:v:14:y:2020:i:1:p:6-:d:466264