EconPapers    
Economics at your fingertips  
 

A New SiC Planar-Gate IGBT for Injection Enhancement Effect and Low Oxide Field

Meng Zhang, Baikui Li, Zheyang Zheng, Xi Tang and Jin Wei
Additional contact information
Meng Zhang: Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
Baikui Li: Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
Zheyang Zheng: Department of Electronic and Computer Engineering, The Hong Kong University of Science and Technology, Hong Kong
Xi Tang: Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
Jin Wei: Institute of Microelectronics, Peking University, Beijing 100871, China

Energies, 2020, vol. 14, issue 1, 1-12

Abstract: A new silicon carbide (SiC) planar-gate insulated-gate bipolar transistor (IGBT) is proposed and comprehensively investigated in this paper. Compared to the traditional SiC planar-gate IGBT, the new IGBT boasts a much stronger injection enhancement effect, which leads to a low on-state voltage ( V ON ) approaching the SiC trench-gate IGBT. The strong injection enhancement effect is obtained by a heavily doped carrier storage layer (CSL), which creates a hole barrier under the p-body to hinder minority carriers from being extracted away through the p-body. A p-shield is located at the bottom of the CSL and coupled to the p-body of the IGBT by an embedded p-MOSFET (metal-oxide-semiconductor field effect transistors). In off-state, the heavily doped CSL is shielded by the p-MOSFET clamped p-shield. Thus, a high breakdown voltage is maintained. At the same time, owing to the planar-gate structure, the proposed IGBT does not suffer the high oxide field that threatens the long-term reliability of the trench-gate IGBT. The turn-off characteristics of the new IGBT are also studied, and the turn-off energy loss ( E OFF ) is similar to the conventional planar-gate IGBT. Therefore, the new IGBT achieves the benefits of both the conventional planar-gate IGBT and the trench-gate IGBT, i.e., a superior V ON - E OFF trade-off and a low oxide field.

Keywords: SiC planar-gate IGBT; injection enhancement effect; embedded trench p-MOSFET; carrier storage layer; E OFF - V ON trade-off (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.mdpi.com/1996-1073/14/1/82/pdf (application/pdf)
https://www.mdpi.com/1996-1073/14/1/82/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:14:y:2020:i:1:p:82-:d:468436

Access Statistics for this article

Energies is currently edited by Ms. Agatha Cao

More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jeners:v:14:y:2020:i:1:p:82-:d:468436