Optimal Design and Analysis of Sector-Coupled Energy System in Northeast Japan
Naoya Nagano,
Rémi Delage and
Toshihiko Nakata
Additional contact information
Naoya Nagano: Department of Management Science and Technology, Graduate School of Engineering, Tohoku University, 6-6-11-815 Aramaki-Aza-Aoba, Aoba-ku, Sendai 980-8579, Japan
Rémi Delage: Department of Management Science and Technology, Graduate School of Engineering, Tohoku University, 6-6-11-815 Aramaki-Aza-Aoba, Aoba-ku, Sendai 980-8579, Japan
Toshihiko Nakata: Department of Management Science and Technology, Graduate School of Engineering, Tohoku University, 6-6-11-815 Aramaki-Aza-Aoba, Aoba-ku, Sendai 980-8579, Japan
Energies, 2021, vol. 14, issue 10, 1-26
Abstract:
As for research on sector-coupled energy systems, few studies comprehensively deal with energy carriers and energy demand sectors. Moreover, few studies have analyzed energy conversion functions such as Power-to-Gas, Power-to-Heat, and Vehicle-to-Grid on the energy system performance. This study clarifies the required renewable resources and costs in the sector-coupled energy system and cost-optimal installed capacity and operation. We formulated an optimization model considering sector coupling and conducted a case study applying the model in the Tohoku region. As a result, due to sector coupling, the total primary energy supply (TPES) is expected to decrease, and system costs are expected to increase from 1.8 to 2.4 times the current level. System costs were minimized when maximizing the use of V2G by electric vehicles and district heating systems (DHS). From the hourly analysis, it becomes clear that the peak cut effect by Power-to-Heat and the peak shift effect by Vehicle-to-Grid result in leveling the output of electrolyzer and fuel synthesizer, which improves the capacity factor reducing capacity addition. Since a large amount of renewable energy is required to realize the designed energy system, it is necessary to reduce the energy demand mainly in the industrial sector. Besides, in order to reduce costs, it is required to utilize electric vehicles by V2G and provide policy support for district heating systems in Japan.
Keywords: energy system; sector coupling; power-to-gas; power-to-heat; vehicle-to-grid (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)
Downloads: (external link)
https://www.mdpi.com/1996-1073/14/10/2823/pdf (application/pdf)
https://www.mdpi.com/1996-1073/14/10/2823/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:14:y:2021:i:10:p:2823-:d:554635
Access Statistics for this article
Energies is currently edited by Ms. Agatha Cao
More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().