EconPapers    
Economics at your fingertips  
 

Impact of Enclosure Boundary Patterns and Lift-Up Design on Optimization of Summer Pedestrian Wind Environment in High-Density Residential Districts

Zhengrong Jiang and Weijun Gao
Additional contact information
Zhengrong Jiang: College of Urban Construction, Zhejiang Shuren University, Hangzhou 310015, China
Weijun Gao: Faculty of Environmental Engineering, The University of Kitakyushu, Fukuoka 8080135, Japan

Energies, 2021, vol. 14, issue 11, 1-17

Abstract: A comfortable wind environment favors the sustainable development of urban residential districts and public health. However, the rapid growth of high-rise urban residential districts leads to low wind velocity environments in summer. This study examines the influence of enclosure boundary patterns and lift-up design on the wind environment and proposes an optimization strategy to improve the low wind velocity environment in residential districts in summer. A typical residential district in Hangzhou was selected; the average wind velocity, calm wind zone ratio and comfortable wind zone ratio were selected as the evaluation indexes. The wind environment for different enclosure boundary patterns and lift-up designs were obtained via computational fluid dynamics (CFD) simulations. The results indicate that the pedestrian wind environment is greatly improved in residential districts by reducing the height/width of the enclosure boundary, increasing the permeability rate and adopting a lift-up design in all buildings within residential districts. A combination of permeable railings and lift-up design is recommended; this can increase the average wind velocity and the ratio of comfortable wind zones by 70% and 200%, respectively. This study provides practical guidelines for the optimization of a low wind velocity environment in Chinese high-density residential districts in summer.

Keywords: high-density residential district; pedestrian wind environment; computational fluid dynamics; enclosure boundary; lift-up design (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
https://www.mdpi.com/1996-1073/14/11/3199/pdf (application/pdf)
https://www.mdpi.com/1996-1073/14/11/3199/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:14:y:2021:i:11:p:3199-:d:565608

Access Statistics for this article

Energies is currently edited by Ms. Agatha Cao

More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jeners:v:14:y:2021:i:11:p:3199-:d:565608