EconPapers    
Economics at your fingertips  
 

Progress in the Use of Biobutanol Blends in Diesel Engines

David Fernández-Rodríguez, Magín Lapuerta and Lizzie German
Additional contact information
David Fernández-Rodríguez: Hydrogen National Centre, Prolongación Fernando el Santo s/n, Puertollano, 13500 Ciudad Real, Spain
Magín Lapuerta: Edificio Politécnico, Escuela Técnica Superior de Ingenieros Industriales, University of Castilla-La Mancha, Avda. Camilo José Cela s/n, 13071 Ciudad Real, Spain
Lizzie German: E4tech UK Ltd., 83 Victoria St., London SW1H 0HW, UK

Energies, 2021, vol. 14, issue 11, 1-22

Abstract: Nowadays, the transport sector is trying to face climate change and to contribute to a sustainable world by introducing modern after-treatment systems or by using biofuels. In sectors such as road freight transportation, agricultural or cogeneration in which the electrification is not considered feasible with the current infrastructure, renewable options for diesel engines such as alcohols produced from waste or lignocellulosic materials with advanced production techniques show a significant potential to reduce the life-cycle greenhouse emissions with respect to diesel fuel. This study concludes that lignocellulosic biobutanol can achieve 60% lower greenhouse gas emissions than diesel fuel. Butanol-diesel blends, with up to 40% butanol content, could be successfully used in a diesel engine calibrated for 100% diesel fuel without any additional engine modification nor electronic control unit recalibration at a warm ambient temperature. When n-butanol is introduced, particulate matter emissions are sharply reduced for butanol contents up to 16% (by volume), whereas NO X emissions are not negatively affected. Butanol-diesel blends could be introduced without startability problems up to 13% (by volume) butanol content at a cold ambient temperature. Therefore, biobutanol can be considered as an interesting option to be blended with diesel fuel, contributing to the decarbonization of these sectors.

Keywords: biofuels; butanol; GHG; properties; emissions; performance; diesel; engine (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (6)

Downloads: (external link)
https://www.mdpi.com/1996-1073/14/11/3215/pdf (application/pdf)
https://www.mdpi.com/1996-1073/14/11/3215/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:14:y:2021:i:11:p:3215-:d:566126

Access Statistics for this article

Energies is currently edited by Ms. Agatha Cao

More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jeners:v:14:y:2021:i:11:p:3215-:d:566126