Recoupling Climate Change and Air Quality: Exploring Low-Emission Options in Urban Transportation Using the TIMES-City Model
Jonas Forsberg and
Anna Krook-Riekkola
Additional contact information
Jonas Forsberg: Department of Engineering Sciences and Mathematics, Division of Energy Science, Luleå University of Technology, SE-97187 Luleå, Sweden
Anna Krook-Riekkola: Department of Engineering Sciences and Mathematics, Division of Energy Science, Luleå University of Technology, SE-97187 Luleå, Sweden
Energies, 2021, vol. 14, issue 11, 1-26
Abstract:
Fossil fuels in transportation are a significant source of local emissions in and around cities; thus, decarbonising transportation can reduce both greenhouse gases (GHGs) and air pollutants (APs). However, the degree of these reductions depends on what replaces fossil fuels. Today, GHG and AP mitigation strategies are typically ‘decoupled’ as they have different motivations and responsibilities. This study investigates the ancillary benefits on (a) APs if the transport sector is decarbonised, and (b) GHGs if APs are drastically cut and (c) the possible co-benefits from targeting APs and GHGs in parallel, using an energy-system optimisation model with a detailed and consistent representation of technology and fuel choices. While biofuels are the most cost-efficient option for meeting ambitious climate-change-mitigation targets, they have a very limited effect on reducing APs. Single-handed deep cuts in APs require a shift to zero-emission battery electric and hydrogen fuel cell vehicles (BEVs, HFCVs), which can result in significant upstream GHG emissions from electricity and hydrogen production. BEVs powered by ‘green’ electricity are identified as the most cost-efficient option for substantially cutting both GHGs and APs. A firm understanding of these empirical relationships is needed to support comprehensive mitigation strategies that tackle the range of sustainability challenges facing cities.
Keywords: climate policy; air pollution policy; ancillary benefits; energy-system optimisation model; urban energy system (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)
Downloads: (external link)
https://www.mdpi.com/1996-1073/14/11/3220/pdf (application/pdf)
https://www.mdpi.com/1996-1073/14/11/3220/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:14:y:2021:i:11:p:3220-:d:566407
Access Statistics for this article
Energies is currently edited by Ms. Agatha Cao
More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().