EconPapers    
Economics at your fingertips  
 

Analysis of Spatial Heterogeneity and the Scale of the Impact of Changes in PM 2.5 Concentrations in Major Chinese Cities between 2005 and 2015

Feili Wei, Shuang Li, Ze Liang, Aiqiong Huang, Zheng Wang, Jiashu Shen, Fuyue Sun, Yueyao Wang, Huan Wang and Shuangcheng Li
Additional contact information
Feili Wei: Key Laboratory for Earth Surface Processes of the Ministry of Education, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
Shuang Li: Key Laboratory for Earth Surface Processes of the Ministry of Education, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
Ze Liang: Key Laboratory for Earth Surface Processes of the Ministry of Education, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
Aiqiong Huang: Foreign Language School, Guangxi Medical University, Nanning 530021, China
Zheng Wang: Key Laboratory for Earth Surface Processes of the Ministry of Education, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
Jiashu Shen: Key Laboratory for Earth Surface Processes of the Ministry of Education, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
Fuyue Sun: Key Laboratory for Earth Surface Processes of the Ministry of Education, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
Yueyao Wang: Key Laboratory for Earth Surface Processes of the Ministry of Education, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
Huan Wang: Key Laboratory for Earth Surface Processes of the Ministry of Education, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
Shuangcheng Li: Key Laboratory for Earth Surface Processes of the Ministry of Education, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China

Energies, 2021, vol. 14, issue 11, 1-20

Abstract: Deteriorating air quality is one of the most important environmental factors posing significant health risks to urban dwellers. Therefore, an exploration of the factors influencing air pollution and the formulation of targeted policies to address this issue are critically needed. Although many studies have used semi-parametric geographically weighted regression and geographically weighted regression to study the spatial heterogeneity characteristics of influencing factors of PM 2.5 concentration change, due to the fixed bandwidth of these methods and other reasons, those studies still lack the ability to describe and explain cross-scale dynamics. The multi-scale geographically weighted regression (MGWR) method allows different variables to have different bandwidths, which can produce more realistic and useful spatial process models. By applying the MGWR method, this study investigated the spatial heterogeneity and spatial scales of impact of factors influencing PM 2.5 concentrations in major Chinese cities during the period 2005–2015. This study showed the following: (1) Factors influencing changes in PM 2.5 concentrations, such as technology, foreign investment levels, wind speed, precipitation, and Normalized Difference Vegetation Index (NDVI), evidenced significant spatial heterogeneity. Of these factors, precipitation, NDVI, and wind speed had small-scale regional effects, whose bandwidth ratios are all less than 20%, while foreign investment levels and technologies had medium-scale regional effects, whose bandwidth levels are 23% and 32%, respectively. Population, urbanization rates, and industrial structure demonstrated weak spatial heterogeneity, and the scale of their influence was predominantly global. (2) Overall, the change of NDVI was the most influential factor, which can explain 15.3% of the PM 2.5 concentration change. Therefore, an enhanced protection of urban surface vegetation would be of universal significance. In some typical areas, dominant factors influencing pollution were evidently heterogeneous. Change in wind speed is a major factor that can explain 51.6% of the change in PM 2.5 concentration in cities in the Central Plains, and change in foreign investment levels is the dominant influencing factor in cities in the Yunnan-Guizhou Plateau and the Sichuan Basin, explaining 30.6% and 44.2% of the PM 2.5 concentration change, respectively. In cities located within the lower reaches of the Yangtze River, NDVI is a key factor, reducing PM 2.5 concentrations by 9.7%. Those results can facilitate the development of region-specific measures and tailored urban policies to reduce PM 2.5 pollution levels in different regions such as Northeast China and the Sichuan Basin.

Keywords: PM 2.5; spatial heterogeneity; multi-scale geographically weighted regression; differentiated governance (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)

Downloads: (external link)
https://www.mdpi.com/1996-1073/14/11/3232/pdf (application/pdf)
https://www.mdpi.com/1996-1073/14/11/3232/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:14:y:2021:i:11:p:3232-:d:566842

Access Statistics for this article

Energies is currently edited by Ms. Agatha Cao

More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jeners:v:14:y:2021:i:11:p:3232-:d:566842