Wind Turbine Tower Deformation Measurement Using Terrestrial Laser Scanning on a 3.4 MW Wind Turbine
Paula Helming,
Axel von Freyberg,
Michael Sorg and
Andreas Fischer
Additional contact information
Paula Helming: Bremen Institute for Metrology, Automation and Quality Science, University of Bremen, 28359 Bremen, Germany
Axel von Freyberg: Bremen Institute for Metrology, Automation and Quality Science, University of Bremen, 28359 Bremen, Germany
Michael Sorg: Bremen Institute for Metrology, Automation and Quality Science, University of Bremen, 28359 Bremen, Germany
Andreas Fischer: Bremen Institute for Metrology, Automation and Quality Science, University of Bremen, 28359 Bremen, Germany
Energies, 2021, vol. 14, issue 11, 1-14
Abstract:
Wind turbine plants have grown in size in recent years, making an efficient structural health monitoring of all of their structures ever more important. Wind turbine towers deform elastically under the loads applied to them by wind and inertial forces acting on the rotating rotor blades. In order to properly analyze these deformations, an earthbound system is desirable that can measure the tower’s movement in two directions from a large measurement working distance of over 150 m and a single location. To achieve this, a terrestrial laser scanner (TLS) in line-scanning mode with horizontal alignment was applied to measure the tower cross-section and to determine its axial (in the line-of-sight) and lateral (transverse to the line-of-sight) position with the help of a least-squares fit. As a result, the proposed measurement approach allowed for analyzing the tower’s deformation. The method was validated on a 3.4 MW wind turbine with a hub height of 128 m by comparing the measurement results to a reference video measurement, which recorded the nacelle movement from below and determined the nacelle movement with the help of point-tracking software. The measurements were compared in the time and frequency domain for different operating conditions, such as low/strong wind and start-up/braking of the turbine. There was a high correlation between the signals from the laser-based and the reference measurement in the time domain, and the same peak of the dominant tower oscillation was determined in the frequency domain. The proposed method was therefore an effective tool for the in-process structural health monitoring of tall wind turbine towers.
Keywords: wind turbine towers; structural health monitoring; terrestrial laser scanning; tower deformation measurement (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
https://www.mdpi.com/1996-1073/14/11/3255/pdf (application/pdf)
https://www.mdpi.com/1996-1073/14/11/3255/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:14:y:2021:i:11:p:3255-:d:567716
Access Statistics for this article
Energies is currently edited by Ms. Agatha Cao
More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().