EconPapers    
Economics at your fingertips  
 

Voltage Regulation For Residential Prosumers Using a Set of Scalable Power Storage

Igor Cavalcante Torres, Daniel M. Farias, Andre L. L. Aquino and Chigueru Tiba
Additional contact information
Igor Cavalcante Torres: Engineering and Agricultural Sciences Campus, Federal University of Alagoas, Rio Largo 57100-000, Brazil
Daniel M. Farias: Computer Institute, Federal University of Alagoas, Maceió 57072-970, Brazil
Andre L. L. Aquino: Computer Institute, Federal University of Alagoas, Maceió 57072-970, Brazil
Chigueru Tiba: Department of Nuclear Energy, Federal University of Pernambuco, Recife 50740-540, Pernambuco

Energies, 2021, vol. 14, issue 11, 1-28

Abstract: Among the electrical problems observed from the solar irradiation variability, the electrical energy quality and the energetic dispatch guarantee stand out. The great revolution in batteries technologies has fostered its usage with the installation of photovoltaic system (PVS). This work presents a proposition for voltage regulation for residential prosumers using a set of scalable power batteries in passive mode, operating as a consumer device. The mitigation strategy makes decisions acting directly on the demand, for a storage bank, and the power of the storage element is selected in consequence of the results obtained from the power flow calculation step combined with the prediction of the solar radiation calculated by a recurrent neural network Long Short-Term Memory (LSTM) type. The results from the solar radiation predictions are used as subsidies to estimate, the state of the power grid, solving the power flow and evidencing the values of the electrical voltages 1-min enabling the entry of the storage device. In this stage, the OpenDSS (Open distribution system simulator) software is used, to perform the complete modeling of the power grid where the study will be developed, as well as simulating the effect of the overvoltages mitigation system. The clear sky day stored 9111 Wh/day of electricity to mitigate overvoltages at the supply point; when compared to other days, the clear sky day needed to store less electricity. On days of high variability, the energy stored to regulate overvoltages was 84% more compared to a clear day. In order to maintain a constant state of charge (SoC), it is necessary that the capacity of the battery bank be increased to meet the condition of maximum accumulated energy. Regarding the total loading of the storage system, the days of low variability consumed approximately 12% of the available capacity of the battery, considering the SoC of 70% of the capacity of each power level.

Keywords: artificial neural network; overvoltage forecast; prosumer; low voltage distributions lines; control short-term overvoltage (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
https://www.mdpi.com/1996-1073/14/11/3288/pdf (application/pdf)
https://www.mdpi.com/1996-1073/14/11/3288/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:14:y:2021:i:11:p:3288-:d:568816

Access Statistics for this article

Energies is currently edited by Ms. Agatha Cao

More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jeners:v:14:y:2021:i:11:p:3288-:d:568816