EconPapers    
Economics at your fingertips  
 

Effectiveness of Artificial Neural Networks in Hedging against WTI Crude Oil Price Risk

Radosław Puka, Bartosz Łamasz and Marek Michalski
Additional contact information
Radosław Puka: Faculty of Management, AGH University of Science and Technology, 30-059 Cracow, Poland
Bartosz Łamasz: Faculty of Management, AGH University of Science and Technology, 30-059 Cracow, Poland
Marek Michalski: Faculty of Management, AGH University of Science and Technology, 30-059 Cracow, Poland

Energies, 2021, vol. 14, issue 11, 1-26

Abstract: Despite the growing share of renewable energy sources, most of the world energy supply is still based on hydrocarbons and the vast majority of world transport is fuelled by oil products. Thus, the profitability of many companies may depend on the effective management of oil price risk. In this article, we analysed the effectiveness of artificial neural networks in hedging against the risk of WTI crude oil prices increase. This was reformulated from a regressive problem to a classification problem. The effectiveness of our approach, using artificial neural networks to classify observations, was verified for over ten years of WTI futures quotes, starting from 2009. The data analysis presented in this paper confirmed that the buyer of a call option was more often likely to incur a loss as a result of its purchase than make a profit after the final payoff from the call option. The results of the conducted research confirm that neural networks can be an effective form of protection against the risk of price fluctuations. The effectiveness of a network’s operation depends on the choice of assessment indicators, but analyses show that the networks which, for the indicator that was selected, gave the best results for the training set, also resulted in positive rates of return for the test set. Significantly, we also showed interdependence between seemingly unrelated indicators: percentage of the best possible results achieved in the analysed period of time by the proposed method and percentage of all available call options that were purchased based on the results from the networks that were used.

Keywords: effectiveness analysis; crude oil price risk; commodity options; artificial neural networks (ANNs); support decision-making (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)

Downloads: (external link)
https://www.mdpi.com/1996-1073/14/11/3308/pdf (application/pdf)
https://www.mdpi.com/1996-1073/14/11/3308/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:14:y:2021:i:11:p:3308-:d:569136

Access Statistics for this article

Energies is currently edited by Ms. Agatha Cao

More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jeners:v:14:y:2021:i:11:p:3308-:d:569136