Integration of Voltage Source Converters in Steady-State RMS Short-Circuit Analysis
Carlos Coelho Teixeira and
Helder Leite
Additional contact information
Carlos Coelho Teixeira: Coimbra Institute of Engineering, Polytechnic of Coimbra, 3030-199 Coimbra, Portugal
Helder Leite: Faculty of Engineering, University of Porto, 4200-465 Porto, Portugal
Energies, 2021, vol. 14, issue 12, 1-12
Abstract:
Voltage source converters (VSCs) are self-commutated converters able to generate AC voltages with or without the support of an AC connecting grid. VSCs allow fast control of active and reactive powers in an independent way. VSCs also have black start capability. Their use in high-voltage direct current (HVDC) systems, comparative to the more mature current source converter (CSC)-based HVDC, offers faster active power flow control. In addition, VSCs provide flexible reactive power control, independent at each converter terminal. It is also useful when connecting DC sources to weak AC grids. Steady-state RMS analysis techniques are commonly used for early-stage analysis, for design purposes and for relaying. Sources interfaced through DC/AC or AC/DC/AC converters, opposite to conventional generators, are not well represented by electromotive forces (E) behind impedance models. A methodology to include voltage source converters (VSCs) in conventional RMS short-circuit analysis techniques is advanced in this work. It represents an iterative procedure inside general calculation techniques and can even be used by those with only basic power electronics knowledge. Results are compared to those of the commercial software package PSS ® CAPE to demonstrate the validity of the proposed rmsVSC algorithm.
Keywords: short-circuit analysis; voltage source converters; HVDC; SCR; short-circuit contribution (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2021
References: View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
https://www.mdpi.com/1996-1073/14/12/3610/pdf (application/pdf)
https://www.mdpi.com/1996-1073/14/12/3610/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:14:y:2021:i:12:p:3610-:d:576647
Access Statistics for this article
Energies is currently edited by Ms. Agatha Cao
More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().