EconPapers    
Economics at your fingertips  
 

GIS-Based Distribution System Planning for New PV Installations

Pawita Bunme, Shuhei Yamamoto, Atsushi Shiota and Yasunori Mitani
Additional contact information
Pawita Bunme: Department of Electrical and Electronics Engineering, Kyushu Institute of Technology, 1-1, Sensui-cho, Tobata-ku, Fukuoka, Kitakyushu City 804-8550, Japan
Shuhei Yamamoto: Department of Electrical and Electronics Engineering, Kyushu Institute of Technology, 1-1, Sensui-cho, Tobata-ku, Fukuoka, Kitakyushu City 804-8550, Japan
Atsushi Shiota: Department of Information Technology, General Affairs Bureau City of Kitakyushu, 1-1, Jonai, Kokurakita-ku, Fukuoka, Kitakyushu City 803-8501, Japan
Yasunori Mitani: Department of Electrical and Electronics Engineering, Kyushu Institute of Technology, 1-1, Sensui-cho, Tobata-ku, Fukuoka, Kitakyushu City 804-8550, Japan

Energies, 2021, vol. 14, issue 13, 1-18

Abstract: Solar panel installations have increased significantly in Japan in recent decades. Due to this, world trends, such as clean/renewable energy, are being implemented in power systems all across Japan—particularly installations of photovoltaic (PV) panels in general households. In this work, solar power was estimated using solar radiation data from geographic information system (GIS) technology. The solar power estimation was applied to the actual distribution system model of the Jono area in Kitakyushu city, Japan. In this work, real power consumption data was applied to a real world distribution system model. We studied the impact of high installation rates of solar panels in Japanese residential areas. Additionally, we considered the voltage fluctuations in the distribution system model by assessing the impact of cloud shadows using a novel cloud movement simulation algorithm that uses real world GIS data. The simulation results revealed that the shadow from the cloud movement process directly impacted the solar power generation in residential areas, which caused voltage fluctuations of the overall distribution system. Thus, we advocate distribution system planning with a large number of solar panels.

Keywords: photovoltaic (PV); solar energy; geographic information system technology; digital surface model (DSM); distribution system; renewable energy; distribution system planning (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
https://www.mdpi.com/1996-1073/14/13/3790/pdf (application/pdf)
https://www.mdpi.com/1996-1073/14/13/3790/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:14:y:2021:i:13:p:3790-:d:581129

Access Statistics for this article

Energies is currently edited by Ms. Agatha Cao

More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jeners:v:14:y:2021:i:13:p:3790-:d:581129