Combustion Characteristics of Multi-Element Swirl Coaxial Jet Injectors under Varying Momentum Ratios
Younseok So,
Yeoungmin Han and
Sejin Kwon
Additional contact information
Younseok So: Department of Aerospace Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, Korea
Yeoungmin Han: Engine Test and Evaluation Team, Korea Aerospace Research Institute, Daejeon 34133, Korea
Sejin Kwon: Department of Aerospace Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, Korea
Energies, 2021, vol. 14, issue 13, 1-18
Abstract:
The combustion characteristics of a staged combustion cycle engine with an oxidizer-rich preburner were experimentally studied at different momentum ratios of multi-element injectors. Propellants were simultaneously supplied as a liquid–liquid–liquid system, and an injector was designed in which a swirl coaxial jet is sprayed. The injector burned the propellants in the inner chamber which had a temperature greater than 2000 K. To cool the combustion gas, a liquid oxidizer was supplied to the cooling channel outside the injector. To prevent the turbine blades from melting, the temperature of the combustion gas was maintained below 700 K. To confirm the combustion characteristics at different momentum ratios of the high-temperature combustion gas inside the injector and the low-temperature liquid oxidizer outside the injector, three types of injectors were designed and manufactured with different momentum ratios: MR 3.0, MR 3.3, and MR 3.7. In this study, the results of the combustion test for each type were compared for 30 s. For ORPB-A, a combustion pressure of 18.5 MPaA, fuel mass flow rate of 0.26 kg/s, oxidizer mass flow rate of 15.3 kg/s, and turbine inlet temperature of 686 K were obtained in the combustion stability period of 29.0–29.5 s. The combustion efficiency was 98% for MR 3.0 (ORPB-A), which was superior to that for other momentum ratios. In addition, during the combustion test for MR 3.0, the fluctuations in the characteristic velocity, combustion pressure, and propellant mass flow rate were low, indicating that combustion was stable. The three types of combustion instability were all less than 0.8%, thus confirming that the combustion stability was excellent.
Keywords: swirl coaxial jet injector; combustion characteristics; hot gas to low temperature liquid momentum ratio; oxidizer-rich preburner; staged combustion cycle engine (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://www.mdpi.com/1996-1073/14/13/4064/pdf (application/pdf)
https://www.mdpi.com/1996-1073/14/13/4064/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:14:y:2021:i:13:p:4064-:d:589050
Access Statistics for this article
Energies is currently edited by Ms. Agatha Cao
More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().