Influences of Geometrical Parameters of Upstream Deflector on Performance of a H-Type Vertical Axis Marine Current Turbine
Donghai Zhou and
Xiaojing Sun
Additional contact information
Donghai Zhou: School of Energy and Power Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
Xiaojing Sun: School of Energy and Power Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
Energies, 2021, vol. 14, issue 14, 1-14
Abstract:
Marine current power is a kind of renewable energy that has attracted increasing attention because of its abundant reserves, high predictability, and consistency. A marine current turbine is a large rotating device that converts the kinetic energy of the marine current into mechanical energy. As a straight-bladed vertical axis marine current turbine (VAMCT) has a square or rectangular cross-section, it can thus have a larger swept area than that of horizontal axis marine current turbines (HAMCT) for a given diameter, and also have good adaptability in shallow water where the turbine size is limited by both width and depth of a channel. However, the low energy utilization efficiency of the VAMCT is the main bottleneck that restricts its application. In this paper, two-dimensional numerical simulations were performed to investigate the effectiveness of an upstream deflector on improving performance of the straight-bladed (H-type) marine current turbine. The effects of various key geometrical parameters of the deflector including position, length, and installation angle on the hydrodynamic characteristics of the VAMCT were then systematically analyzed in order to explore the mechanism underlying the interaction between the deflector and rotor of a VAMCT. As a result, the optimal combination of geometrical parameters of the deflector by which the maximum energy utilization efficiency was achieved was a 13.37% increment compared to that of the original VAMCT. The results of this work show the feasibility of the deflector as a potential choice for improving the energy harvesting performance of a VAMCT with simple structure and easy implementation.
Keywords: marine current power; deflector; H-type vertical axis marine current turbine; energy conversion efficiency (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
https://www.mdpi.com/1996-1073/14/14/4087/pdf (application/pdf)
https://www.mdpi.com/1996-1073/14/14/4087/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:14:y:2021:i:14:p:4087-:d:589730
Access Statistics for this article
Energies is currently edited by Ms. Agatha Cao
More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().