Pseudo-Homogeneous and Heterogeneous Kinetic Models of the NaOH-Catalyzed Methanolysis Reaction for Biodiesel Production
Silvia Zabala,
Inés Reyero,
Idoia Campo,
Gurutze Arzamendi and
Luis M. Gandía
Additional contact information
Silvia Zabala: Departamento de Ciencias, Institute for Advanced Materials and Mathematics (INAMAT2), Universidad Pública de Navarra (UPNA), Arrosadia Campus, 31006 Pamplona, Spain
Inés Reyero: Departamento de Ciencias, Institute for Advanced Materials and Mathematics (INAMAT2), Universidad Pública de Navarra (UPNA), Arrosadia Campus, 31006 Pamplona, Spain
Idoia Campo: Departamento de Ciencias, Institute for Advanced Materials and Mathematics (INAMAT2), Universidad Pública de Navarra (UPNA), Arrosadia Campus, 31006 Pamplona, Spain
Gurutze Arzamendi: Departamento de Ciencias, Institute for Advanced Materials and Mathematics (INAMAT2), Universidad Pública de Navarra (UPNA), Arrosadia Campus, 31006 Pamplona, Spain
Luis M. Gandía: Departamento de Ciencias, Institute for Advanced Materials and Mathematics (INAMAT2), Universidad Pública de Navarra (UPNA), Arrosadia Campus, 31006 Pamplona, Spain
Energies, 2021, vol. 14, issue 14, 1-15
Abstract:
Methanolysis of vegetable oils in the presence of homogeneous catalysts remains the most important process for producing biodiesel. However, there is still a lack of accurate description of the reaction kinetics. This is in part due to the complexity of the reacting system in which a large number of interconnected reactions take place simultaneously. In this work, attention is focused on the biphasic character of the reaction medium, formed by two immiscible liquid phases. The behavior of the phases is investigated regarding their physicochemical properties, mainly density and mutual solubility of the components, as well as composition. In addition, two kinetic models with different level of complexity regarding the biphasic character of the reaction medium have been developed. It has been found that a heterogeneous model considering the presence of the two phases and the distribution of the several compounds between them is indispensable to get a good description of the process in terms of oil conversion and products yields. The model captures the effects of the main variables of an isothermal batch methanolysis process: methanol/oil molar ratio, reaction time and catalyst concentration. Nevertheless, some adjustment is still required as concerns modelling of the saponification reactions and catalyst deactivation.
Keywords: biodiesel; biofuel; kinetics (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://www.mdpi.com/1996-1073/14/14/4192/pdf (application/pdf)
https://www.mdpi.com/1996-1073/14/14/4192/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:14:y:2021:i:14:p:4192-:d:592353
Access Statistics for this article
Energies is currently edited by Ms. Agatha Cao
More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().