EconPapers    
Economics at your fingertips  
 

Striated Tire Yaw Marks—Modeling and Validation

Wojciech Wach and Jakub Zębala
Additional contact information
Wojciech Wach: Institute of Forensic Research in Kraków, 31-033 Kraków, Poland
Jakub Zębala: Institute of Forensic Research in Kraków, 31-033 Kraków, Poland

Energies, 2021, vol. 14, issue 14, 1-21

Abstract: Tire yaw marks deposited on the road surface carry a lot of information of paramount importance for the analysis of vehicle accidents. They can be used: (a) in a macro-scale for establishing the vehicle’s positions and orientation as well as an estimation of the vehicle’s speed at the start of yawing; (b) in a micro-scale for inferring among others things the braking or acceleration status of the wheels from the topology of the striations forming the mark. A mathematical model of how the striations will appear has been developed. The model is universal, i.e., it applies to a tire moving along any trajectory with variable curvature, and it takes into account the forces and torques which are calculated by solving a system of non-linear equations of vehicle dynamics. It was validated in the program developed by the author, in which the vehicle is represented by a 36 degree of freedom multi-body system with the TMeasy tire model. The mark-creating model shows good compliance with experimental data. It gives a deep view of the nature of striated yaw marks’ formation and can be applied in any program for the simulation of vehicle dynamics with any level of simplification.

Keywords: yaw marks striations; tire model; multibody dynamics; vehicle accident simulation (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2021
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.mdpi.com/1996-1073/14/14/4309/pdf (application/pdf)
https://www.mdpi.com/1996-1073/14/14/4309/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:14:y:2021:i:14:p:4309-:d:596174

Access Statistics for this article

Energies is currently edited by Ms. Agatha Cao

More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jeners:v:14:y:2021:i:14:p:4309-:d:596174