EconPapers    
Economics at your fingertips  
 

High-Efficient Brushless Wound Rotor Synchronous Machine Topology Based on Sub-Harmonic Field-Excitation Technique

Syed Sabir Hussain Bukhari, Qasim Ali, Jesús Doval-Gandoy and Jong-Suk Ro
Additional contact information
Syed Sabir Hussain Bukhari: Department of Electrical Engineering, Sukkur IBA University, Sukkur 65200, Pakistan
Qasim Ali: Department of Electrical Engineering, Sukkur IBA University, Sukkur 65200, Pakistan
Jesús Doval-Gandoy: Applied Power Electronics Technology Research Group, University of Vigo, 36310 Vigo, Spain
Jong-Suk Ro: School of Electrical and Electronics Engineering, Chung-Ang University, Seoul 06910, Korea

Energies, 2021, vol. 14, issue 15, 1-17

Abstract: This paper presents a new high-efficient three-phase brushless wound rotor synchronous machine (BL-WRSM) based on a sub-harmonic field excitation technique. In the proposed machine topology, the stator is equipped with two different three-phase windings: (1) main armature winding, and (2) additional armature winding. The main armature winding is based on a 4-pole winding configuration, whereas the additional armature winding is based on a 2-pole winding configuration. Both windings are supplied current from two different inverters, i.e., inverter-1, inverter-2, and simultaneously. Inverter-1 provides the regular input current to the main armature winding, whereas inverter-2 provides a three-phase current of low magnitude to the 2-pole additional armature winding. This generates an additional sub-harmonic component of MMF in the airgap beside the fundamental MMF. On the other side, the rotor is equipped with (1) harmonic, and (2) field windings. These windings are electrically coupled via a rectifier. The fundamental component of MMF produces the main rotating magnetic field, whereas the sub-harmonic MMF gets induced in the harmonic winding to produce harmonic current. This current is rectified to give DC to the rotor field winding to attain brushless operation. To authenticate the operation and analyze its performance, the proposed BL-WRSM topology is supported using 2-D finite element analysis (FEA) in JMAG-Designer. Later on, the performance of the proposed brushless topology is compared with the customary BL-WRSM topology to verify its high efficiency, high output torque, low torque ripple, and low unbalanced radial force on the rotor.

Keywords: sub-harmonic field excitation; brushless operation; synchronous motor (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
https://www.mdpi.com/1996-1073/14/15/4427/pdf (application/pdf)
https://www.mdpi.com/1996-1073/14/15/4427/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:14:y:2021:i:15:p:4427-:d:599375

Access Statistics for this article

Energies is currently edited by Ms. Agatha Cao

More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jeners:v:14:y:2021:i:15:p:4427-:d:599375