Complementary Feature Extractions for Event Identification in Power Systems Using Multi-Channel Convolutional Neural Network
Do-In Kim
Additional contact information
Do-In Kim: Department of Electrical Engineering, Wonkwang University, 460 Iksandae-ro, Iksan 54538, Jeonbuk, Korea
Energies, 2021, vol. 14, issue 15, 1-15
Abstract:
This paper presents an event identification process in complementary feature extractions via convolutional neural network (CNN)-based event classification. The CNN is a suitable deep learning technique for addressing the two-dimensional power system data as it directly derives information from a measurement signal database instead of modeling transient phenomena, where the measured synchrophasor data in the power systems are allocated by time and space domains. The dynamic signatures in phasor measurement unit (PMU) signals are analyzed based on the starting point of the subtransient signals, as well as the fluctuation signature in the transient signal. For fast decision and protective operations, the use of narrow band time window is recommended to reduce the acquisition delay, where a wide time window provides high accuracy due to the use of large amounts of data. In this study, two separate data preprocessing methods and multichannel CNN structures are constructed to provide validation, as well as the fast decision in successive event conditions. The decision result includes information pertaining to various event types and locations based on various time delays for the protective operation. Finally, this work verifies the event identification method through a case study and analyzes the effects of successive events in addition to classification accuracy.
Keywords: synchrophasor; phasor measurement unit (PMU); event classification; successive event; convolutional neural network (CNN) (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://www.mdpi.com/1996-1073/14/15/4446/pdf (application/pdf)
https://www.mdpi.com/1996-1073/14/15/4446/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:14:y:2021:i:15:p:4446-:d:599808
Access Statistics for this article
Energies is currently edited by Ms. Agatha Cao
More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().