EconPapers    
Economics at your fingertips  
 

Comparison of 3D Solid and Beam–Spring FE Modeling Approaches in the Evaluation of Buried Pipeline Behavior at a Strike-Slip Fault Crossing

Farzad Talebi and Junji Kiyono
Additional contact information
Farzad Talebi: Graduate School of Engineering, Kyoto University, Kyoto 615-8530, Japan
Junji Kiyono: Graduate School of Engineering, Kyoto University, Kyoto 615-8530, Japan

Energies, 2021, vol. 14, issue 15, 1-17

Abstract: Validated 3D solid finite element (FE) models offer an accurate performance of buried pipelines at earthquake faults. However, it is common to use a beam–spring model for the design of buried pipelines, and all the design guidelines are fitted to this modeling approach. Therefore, this study has focused on (1) the improvement of modeling techniques in the beam–spring FE modeling approach for the reproduction of the realistic performance of buried pipelines, and (2) the determination of an appropriate damage criterion for buried pipelines in beam–spring FE models. For this paper, after the verification of FE models by pull-out and lateral sliding tests, buried pipeline performance was evaluated at a strike-slip fault crossing using nonlinear beam–spring FE models and nonlinear 3D solid FE models. Material nonlinearity, contact nonlinearity, and geometrical nonlinearity effects were considered in all analyses. Based on the results, pressure and shear forces caused by fault movement and pipeline deformation around the high curvature zone cause local confinement of the soil, and soil stiffness around the high curvature zone locally increases. This increases the soil–pipe interaction forces on pipelines in high curvature zones. The beam–spring models and design guidelines, because of the uniform assumption of the soil spring stiffness along the pipe, do not consider this phenomenon. Therefore, to prevent the underestimation of forces on the pipeline, it is recommended to consider local increases in soil spring stiffness around the high curvature zone in beam–spring models. Moreover, drastic increases in the strain responses of the pipeline in the beam–spring model is a good criterion for a damage evaluation of the pipeline.

Keywords: soil–pipe interaction; buried pipeline; finite element method; soil springs; soil–structure interaction; strike-slip fault; buckling; FEA (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2021
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.mdpi.com/1996-1073/14/15/4539/pdf (application/pdf)
https://www.mdpi.com/1996-1073/14/15/4539/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:14:y:2021:i:15:p:4539-:d:602486

Access Statistics for this article

Energies is currently edited by Ms. Agatha Cao

More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jeners:v:14:y:2021:i:15:p:4539-:d:602486