Closed-Form Expressions to Estimate the Mean and Variance of the Total Vector Error
Alessandro Mingotti,
Federica Costa,
Lorenzo Peretto and
Roberto Tinarelli
Additional contact information
Alessandro Mingotti: Department of Electrical, Electronic and Information Engineering “Guglielmo Marconi”, Alma Mater Studiorum, University of Bologna, Viale del Risorgimento 2, 40136 Bologna, Italy
Federica Costa: Department of Electrical, Electronic and Information Engineering “Guglielmo Marconi”, Alma Mater Studiorum, University of Bologna, Viale del Risorgimento 2, 40136 Bologna, Italy
Lorenzo Peretto: Department of Electrical, Electronic and Information Engineering “Guglielmo Marconi”, Alma Mater Studiorum, University of Bologna, Viale del Risorgimento 2, 40136 Bologna, Italy
Roberto Tinarelli: Department of Electrical, Electronic and Information Engineering “Guglielmo Marconi”, Alma Mater Studiorum, University of Bologna, Viale del Risorgimento 2, 40136 Bologna, Italy
Energies, 2021, vol. 14, issue 15, 1-15
Abstract:
The need for accurate measurements and for estimating the uncertainties associated with measures are two pillars for researchers and metrologists. This is particularly true in distribution networks due to a mass deployment of new intelligent electronic devices. Among such devices, phasor measurement units are key enablers for obtaining the full observability of the grid. The phasor measurement unit performance is mostly evaluated by means of the total vector error, which combines the error on amplitude, phase, and time. However, the total vector error is typically provided merely as a number, that could vary within an unknown interval. This may result into the phasor measurement unit incompliance with the final user expectancies. To this purpose, and with the aim of answering practical needs from the industrial world, this paper presents a closed-form expression that allows us to quantify, in a simple way, the confidence interval associated with the total vector error. The input required by the expression is the set of errors that typically affects the analog to digital converter of a phasor measurement unit. The obtained expression has been validated by means of the Monte Carlo method in a variety of realistic conditions. The results confirm the applicability and effectiveness of the proposed expression. It can be then easily implemented in all monitoring device algorithms, or directly by the manufacturer to characterize their devices, to solve the lack of knowledge that affects the total vector error computation.
Keywords: total vector error; phasor measurement unit; uncertainty; measurement; Monte Carlo; probability density function; algorithm (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://www.mdpi.com/1996-1073/14/15/4641/pdf (application/pdf)
https://www.mdpi.com/1996-1073/14/15/4641/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:14:y:2021:i:15:p:4641-:d:605712
Access Statistics for this article
Energies is currently edited by Ms. Agatha Cao
More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().