EconPapers    
Economics at your fingertips  
 

Sizing Procedure for System Hybridization Based on Experimental Source Modeling in Grid Application

Nissim Amar, Aaron Shmaryahu, Michael Coletti and Ilan Aharon
Additional contact information
Nissim Amar: Department of Electrical Engineering and Electronics, Ariel University, Ariel 40700, Israel
Aaron Shmaryahu: Department of Electrical Engineering and Electronics, Ariel University, Ariel 40700, Israel
Michael Coletti: Department of Electrical Engineering and Electronics, Ariel University, Ariel 40700, Israel
Ilan Aharon: Department of Electrical Engineering and Electronics, Ariel University, Ariel 40700, Israel

Energies, 2021, vol. 14, issue 15, 1-19

Abstract: Hybridization of sources is spreading worldwide by utilizing renewable sources and storage units as standard parts of every grid. The conjunction of energy source and storage type open the door to reshaping the sustainability and robustness of the mains while improving system parameters such as efficiency and fuel consumption. The solution fits existing networks as well as new ones. The study proposes the creation of an accurate optimal sizing procedure for setting the required rating of each type of source. The first step is to model the storage and energy sources by using real experimental results for creating the generic database. Then, data on the mission profile, system constraints, and the minimization target function are inserted. The mission profile is then analyzed to determine the minimum and maximum energy source rating. Next, the real time energy management system controller is used to find the set of solutions for each available energy source and the optimal compatible storage in the revealed band to fulfil the mission task. A Pareto-curve is then plotted to present the optimal findings of the sizing procedure. Ultimately, the main research contribution is the far more accurate sizing results. A case study shows that relying on the standard method leads to noncompliance of sizing constraints, while the proposed procedure leads to fulfilling the mission successfully. First, by utilizing experimentally based energy and a storage unit. Second, by using the same real time energy management system controller in the sizing procedure.

Keywords: sizing; hybrid sources; experimental base modelling; real time energy management system (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
https://www.mdpi.com/1996-1073/14/15/4685/pdf (application/pdf)
https://www.mdpi.com/1996-1073/14/15/4685/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:14:y:2021:i:15:p:4685-:d:606939

Access Statistics for this article

Energies is currently edited by Ms. Agatha Cao

More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jeners:v:14:y:2021:i:15:p:4685-:d:606939