Performance Quantification of Enhanced Oil Recovery Methods in Fractured Reservoirs
Riyaz Kharrat,
Mehdi Zallaghi and
Holger Ott
Additional contact information
Riyaz Kharrat: Department Petroleum Engineering, Montanuniversität Leoben, 8700 Leoben, Austria
Mehdi Zallaghi: Petroleum Research Center, Petroleum University of Technology, Tehran 14539-63341, Iran
Holger Ott: Department Petroleum Engineering, Montanuniversität Leoben, 8700 Leoben, Austria
Energies, 2021, vol. 14, issue 16, 1-22
Abstract:
The enhanced oil recovery mechanisms in fractured reservoirs are complex and not fully understood. It is technically challenging to quantify the related driving forces and their interaction in the matrix and fractures medium. Gravity and capillary forces play a leading role in the recovery process of fractured reservoirs. This study aims to quantify the performance of EOR methods in fractured reservoirs using dimensionless numbers. A systematic approach consisting of the design of experiments, simulations, and proxy-based optimization was used in this work. The effect of driving forces on oil recovery for water injection and several EOR processes such as gas injection, foam injection, water-alternating gas (WAG) injection, and foam-assisted water-alternating gas (FAWAG) injection was analyzed using dimensionless numbers and a surface response model. The results show that equilibrium between gravitational and viscous forces in fracture and capillary and gravity forces in matrix blocks determines oil recovery performance during EOR in fractured reservoirs. When capillary forces are dominant in gas injection, fluid exchange between fracture and matrix is low; consequently, the oil recovery is low. In foam-assisted water-alternating gas injection, gravity and capillary forces are in equilibrium conditions as several mechanisms are involved. The capillary forces dominate the water cycle, while gravitational forces govern the gas cycle due to the foam enhancement properties, which results in the highest oil recovery factor. Based on the performed sensitivity analysis of matrix–fracture interaction on the performance of the EOR processes, the foam and FAWAG injection methods were found to be more sensitive to permeability contrast, density, and matrix block highs than WAG injection.
Keywords: fractured reservoirs; dimensionless numbers; enhanced oil recovery; gravity and capillary forces (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2021
References: View complete reference list from CitEc
Citations: View citations in EconPapers (5)
Downloads: (external link)
https://www.mdpi.com/1996-1073/14/16/4739/pdf (application/pdf)
https://www.mdpi.com/1996-1073/14/16/4739/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:14:y:2021:i:16:p:4739-:d:608402
Access Statistics for this article
Energies is currently edited by Ms. Agatha Cao
More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().