EconPapers    
Economics at your fingertips  
 

Experimental Investigation of Micro Cooling Units on Impingement Jet Array Flow Pressure Loss and Heat Transfer Characteristics

Zhong Ren, Xiaoyu Yang, Xunfeng Lu, Xueying Li and Jing Ren
Additional contact information
Zhong Ren: Department of Energy and Power Engineering, Tsinghua University, Beijing 100084, China
Xiaoyu Yang: Department of Energy and Power Engineering, Tsinghua University, Beijing 100084, China
Xunfeng Lu: Department of Energy and Power Engineering, Tsinghua University, Beijing 100084, China
Xueying Li: Department of Energy and Power Engineering, Tsinghua University, Beijing 100084, China
Jing Ren: Department of Energy and Power Engineering, Tsinghua University, Beijing 100084, China

Energies, 2021, vol. 14, issue 16, 1-21

Abstract: With the development in additive manufacturing, the use of surface treatments for gas turbine design applications has greatly expanded. An experimental investigation of the pressure loss and heat transfer characteristics within impingement jet arrays with arrays of target surface micro cooling units is presented. The discharge coefficient and Nusselt number are measured and determined for an evaluation of the pressure loss of the flow system and heat transfer level, respectively. Considered are effects of impingement jet Reynolds number ranging from 1000 to 15,000 and micro cooling units (square pin fin) height (h) with associated values of 0.01, 0.02, 0.05, 0.2, and 0.4 D, where D is the impingement hole diameter. Presented are variations of Nusselt number, and Nusselt number ratio, discharge coefficient, discharge coefficient ratio, discharge coefficient correlation. Depending upon the micro cooling unit height, discharge coefficient ratios slightly decrease with height, and the ratio values generally remain unit value (1.0). When Re j = 1000 and 2500 for several cooling units height values, discharge coefficient ratios show the pressure loss decreases about 2–18% and 3–6%, respectively, when compared to the data of a baseline smooth target surface plate. The observed phenomenon is due to the effects of flow blockage of micro cooing units, local flow separation, and near-wall viscous sublayer reattachment. Results also show that heat transfer levels increase 20–300% for some of the tested toughened target surface plates when compared to smooth target surface plates. The heat transfer level enhancement is because of an increase in thermal transport and near-wall mixing, as well as the increased wetted area. In addition, micro cooling units elements break the viscous sublayer and cause greater turbulence intensity when compared to the smooth target surface. Overall, results demonstrate that the target surface micro cooling units do not result in a visible increment in pressure loss and reduce pressure loss of the flow system for some of the tested patterns. Moreover, results show the significant ability of micro cooling units to enhance the surface heat transfer capability of impingement cooling relative to smooth target surfaces.

Keywords: heat transfer; gas turbine; impingement cooling; surface treatments; micro cooling units (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2021
References: View complete reference list from CitEc
Citations: View citations in EconPapers (4)

Downloads: (external link)
https://www.mdpi.com/1996-1073/14/16/4757/pdf (application/pdf)
https://www.mdpi.com/1996-1073/14/16/4757/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:14:y:2021:i:16:p:4757-:d:608918

Access Statistics for this article

Energies is currently edited by Ms. Agatha Cao

More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jeners:v:14:y:2021:i:16:p:4757-:d:608918