EconPapers    
Economics at your fingertips  
 

M-SRPCNN: A Fully Convolutional Neural Network Approach for Handling Super Resolution Reconstruction on Monthly Energy Consumption Environments

Iván de-Paz-Centeno, María Teresa García-Ordás, Oscar García-Olalla, Javier Arenas and Héctor Alaiz-Moretón
Additional contact information
Iván de-Paz-Centeno: SMARKIA ENERGY S.L., Av. Padre Isla 16, 24002 León, Spain
María Teresa García-Ordás: SECOMUCI Research Groups, Escuela de Ingenierías Industrial e Informática, Universidad de León, Campus de Vegazana s/n, 24071 León, Spain
Oscar García-Olalla: SMARKIA ENERGY S.L., Av. Padre Isla 16, 24002 León, Spain
Javier Arenas: SMARKIA ENERGY S.L., Av. Padre Isla 16, 24002 León, Spain
Héctor Alaiz-Moretón: SECOMUCI Research Groups, Escuela de Ingenierías Industrial e Informática, Universidad de León, Campus de Vegazana s/n, 24071 León, Spain

Energies, 2021, vol. 14, issue 16, 1-14

Abstract: We propose M-SRPCNN, a fully convolutional generative deep neural network to recover missing historical hourly data from a sensor based on the historic monthly energy consumption. The network performs a reconstruction of the load profile while keeping the overall monthly consumption, which makes it suitable to effectively replace energy apportioning systems. Experiments demonstrate that M-SRPCNN can effectively reconstruct load curves from single month overall values, outperforming traditional apportioning systems.

Keywords: super resolution perception; super resolution of energy; data interpolation; convolutional neural network; deep-learning (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2021
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.mdpi.com/1996-1073/14/16/4765/pdf (application/pdf)
https://www.mdpi.com/1996-1073/14/16/4765/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:14:y:2021:i:16:p:4765-:d:609233

Access Statistics for this article

Energies is currently edited by Ms. Agatha Cao

More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jeners:v:14:y:2021:i:16:p:4765-:d:609233