M-SRPCNN: A Fully Convolutional Neural Network Approach for Handling Super Resolution Reconstruction on Monthly Energy Consumption Environments
Iván de-Paz-Centeno,
María Teresa García-Ordás,
Oscar García-Olalla,
Javier Arenas and
Héctor Alaiz-Moretón
Additional contact information
Iván de-Paz-Centeno: SMARKIA ENERGY S.L., Av. Padre Isla 16, 24002 León, Spain
María Teresa García-Ordás: SECOMUCI Research Groups, Escuela de Ingenierías Industrial e Informática, Universidad de León, Campus de Vegazana s/n, 24071 León, Spain
Oscar García-Olalla: SMARKIA ENERGY S.L., Av. Padre Isla 16, 24002 León, Spain
Javier Arenas: SMARKIA ENERGY S.L., Av. Padre Isla 16, 24002 León, Spain
Héctor Alaiz-Moretón: SECOMUCI Research Groups, Escuela de Ingenierías Industrial e Informática, Universidad de León, Campus de Vegazana s/n, 24071 León, Spain
Energies, 2021, vol. 14, issue 16, 1-14
Abstract:
We propose M-SRPCNN, a fully convolutional generative deep neural network to recover missing historical hourly data from a sensor based on the historic monthly energy consumption. The network performs a reconstruction of the load profile while keeping the overall monthly consumption, which makes it suitable to effectively replace energy apportioning systems. Experiments demonstrate that M-SRPCNN can effectively reconstruct load curves from single month overall values, outperforming traditional apportioning systems.
Keywords: super resolution perception; super resolution of energy; data interpolation; convolutional neural network; deep-learning (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2021
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
https://www.mdpi.com/1996-1073/14/16/4765/pdf (application/pdf)
https://www.mdpi.com/1996-1073/14/16/4765/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:14:y:2021:i:16:p:4765-:d:609233
Access Statistics for this article
Energies is currently edited by Ms. Agatha Cao
More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().