An Algorithm for Calculation and Extraction of the Grid Voltage Component
Michał Gwóźdź and
Łukasz Ciepliński
Additional contact information
Michał Gwóźdź: Faculty of Control, Robotics and Electrical Engineering, Poznan University of Technology, 60965 Poznań, Poland
Łukasz Ciepliński: Faculty of Control, Robotics and Electrical Engineering, Poznan University of Technology, 60965 Poznań, Poland
Energies, 2021, vol. 14, issue 16, 1-12
Abstract:
Calculating the values of the parameters of distorted periodic signals in real-time is important for the control of many processes. In particular, this information is necessary for the proper operation of power electronics devices that cooperate with the power grid. In such cases, it is necessary to determine the phase, frequency, and amplitude of the fundamental component of the voltage in the power grid node. Also, in many cases, the control process needs a signal which is synchronised with the power grid voltage. Both processes should be realised in real-time. A number of solutions to the problem of calculating the values of the voltage parameters have been described in the literature. However, these methods generally introduce significant time delays and have several restrictions regarding the variability in the values of these parameters. They also often require the significant computational power of a unit that performs the task of identification. The algorithm presented in this work is based on the properties of a pair of orthogonal signals, generated by a two-dimensional finite impulse response filter, which has a certain transfer function resulting from the needs of the algorithm, what is the innovation of the algorithm. These signals are then used in the program module, which both, calculates, in the time domain, the instantaneous values of the frequency and the amplitude of the fundamental component of the power grid voltage, and generates a signal, being in-phase with this component. The presented algorithm is fast, accurate, and relatively simple; therefore, it does not require a high computational power processor. This algorithm was experimentally verified by implementation in microcomputer-based units, which were then applied in the control systems of the power electronic devices, as well as in analysers of the energy quality.
Keywords: amplitude identification; frequency identification; energy quality; power grid; signal synchronization (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://www.mdpi.com/1996-1073/14/16/4842/pdf (application/pdf)
https://www.mdpi.com/1996-1073/14/16/4842/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:14:y:2021:i:16:p:4842-:d:610936
Access Statistics for this article
Energies is currently edited by Ms. Agatha Cao
More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().