EconPapers    
Economics at your fingertips  
 

Electric Field and Temperature Simulations of High-Voltage Direct Current Cables Considering the Soil Environment

Christoph Jörgens and Markus Clemens
Additional contact information
Christoph Jörgens: Chair of Electromagnetic Theory, School of Electrical, Information and Media Engineering, University of Wuppertal, 42119 Wuppertal, Germany
Markus Clemens: Chair of Electromagnetic Theory, School of Electrical, Information and Media Engineering, University of Wuppertal, 42119 Wuppertal, Germany

Energies, 2021, vol. 14, issue 16, 1-18

Abstract: For long distance electric power transport, high-voltage direct current (HVDC) cable systems are a commonly used solution. Space charges accumulate in the HVDC cable insulations due to the applied voltage and the nonlinear electric conductivity of the insulation material. The resulting electric field depends on the material parameters of the surrounding soil environment that may differ locally and have an influence on the temperature distribution in the cable and the environment. To use the radial symmetry of the cable geometry, typical electric field simulations neglect the influence of the surrounding soil, due to different dimensions of the cable and the environment and the resulting high computational effort. Here, the environment and its effect on the resulting electric field is considered and the assumption of a possible radial symmetric temperature within the insulation is analyzed. To reduce the computation time, weakly coupled simulations are performed to compute the temperature and the electric field inside the cable insulation, neglecting insulation losses. The results of a weakly coupled simulation are compared against those of a full transient simulation, considering the insulation losses for two common cable insulations with different maximum operation temperatures. Due to the buried depth of HV cables, an approximately radial symmetric temperature distribution within the insulation is obtained for a single cable and cable pairs when, considering a metallic sheath. Furthermore, the simulations show a temperature increase of the earth–air interface above the buried cable that needs to be considered when computing the cable conductor temperature, using the IEC standards.

Keywords: high-voltage direct current; space charges; nonlinear electric conductivity; numerical simulation (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2021
References: View complete reference list from CitEc
Citations: View citations in EconPapers (3)

Downloads: (external link)
https://www.mdpi.com/1996-1073/14/16/4910/pdf (application/pdf)
https://www.mdpi.com/1996-1073/14/16/4910/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:14:y:2021:i:16:p:4910-:d:612457

Access Statistics for this article

Energies is currently edited by Ms. Agatha Cao

More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jeners:v:14:y:2021:i:16:p:4910-:d:612457