EconPapers    
Economics at your fingertips  
 

Impact of Low-Pressure UV Lamp on Swimming Pool Water Quality and Operating Costs

Agnieszka Włodyka-Bergier and Tomasz Bergier
Additional contact information
Agnieszka Włodyka-Bergier: Department of Environmental Management and Protection, Faculty of Mining Surveying and Environmental Engineering, AGH University of Science and Technology, al. Mickiewicza 30, 30-059 Kraków, Poland
Tomasz Bergier: Department of Environmental Management and Protection, Faculty of Mining Surveying and Environmental Engineering, AGH University of Science and Technology, al. Mickiewicza 30, 30-059 Kraków, Poland

Energies, 2021, vol. 14, issue 16, 1-11

Abstract: UV lamps are being increasingly used in the treatment of swimming pool water, mainly due to their abilities to disinfect and effectively remove chloramines (combined chlorine). However, the application of UV lamps in a closed loop system, such as that in which swimming pool water is treated, creates conditions under which chlorinated water is then also irradiated with UV. Thus, the advanced oxidation process occurs, which affects the transformation of organic matter and its increased reactivity, and hence the higher usage of chlorine disinfectant. In addition, UV lamps require electrical power and the periodic replacement of filaments. In order to assess whether the application of a low-pressure UV lamp is justified, water quality tests and an analysis of the operating costs (including the energy consumption) of the water treatment system were carried out for two operation variants—those of the low-pressure UV lamp being turned on and off. The experiments were carried out on the real object of the AGH University of Science and Technology sports swimming pool for one year. The consumption of electricity and water treatment reagents was also measured. The following values of the selected parameters of the swimming pool water quality were observed (for without and with UV lamp, respectively): 0.68 and 0.52 mg/L combined chlorine; 3.12 and 3.02 mg/L dissolved organic carbon; 15.70 and 15.26 µg/L trihalomethanes; 7 and 6 cfu/mL mesophilic bacteria; and 6 and 20 cfu/mL psychrophilic bacteria. Generally, the statistically important differences in water quality parameters were not observed, thus the application of the low-pressure UV lamp in the swimming pool water treatment technology did not bring the expected improvement in water quality. However, the higher consumption of electric energy (by 29%) and chlorine disinfectant (by 15%), and the need to periodically replace the lamp filaments significantly increased the operating costs of the water treatment system (by 21%) and its ecological impact, thus this technology cannot be considered as profitable or ecological.

Keywords: swimming pool water; UV radiation; disinfection by-products; energy savings; operating costs (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2021
References: View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
https://www.mdpi.com/1996-1073/14/16/5013/pdf (application/pdf)
https://www.mdpi.com/1996-1073/14/16/5013/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:14:y:2021:i:16:p:5013-:d:614989

Access Statistics for this article

Energies is currently edited by Ms. Agatha Cao

More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jeners:v:14:y:2021:i:16:p:5013-:d:614989