Dynamic Uncertain Causality Graph Applied to the Intelligent Evaluation of a Shale-Gas Sweet Spot
Quanying Yao,
Bo Yang and
Qin Zhang
Additional contact information
Quanying Yao: Department of Computer Science and Technology, Tsinghua University, Beijing 100084, China
Bo Yang: School of Emergency Technology and Management, North China Institute of Science & Technology, Langfang 065201, China
Qin Zhang: Department of Computer Science and Technology, Tsinghua University, Beijing 100084, China
Energies, 2021, vol. 14, issue 17, 1-20
Abstract:
Shale-gas sweet-spot evaluation as a critical part of shale-gas exploration and development has always been the focus of experts and scholars in the unconventional oil and gas field. After comprehensively considering geological, engineering, and economic factors affecting the evaluation of shale-gas sweet spots, a dynamic uncertainty causality graph (DUCG) is applied for the first time to shale-gas sweet-spot evaluation. A graphical modeling scheme is presented to reduce the difficulty in model construction. The evaluation model is based on expert knowledge and does not depend on data. Through rigorous and efficient reasoning, it guarantees exact and efficient diagnostic reasoning in the case of incomplete information. Multiple conditional events and weighted graphs are proposed for specific problems in shale-gas sweet-spot evaluation, which is an extension of the DUCG that defines only one conditional event for different weighted function events and relies only on the experience of a single expert. These solutions make the reasoning process and results more objective, credible, and interpretable. The model is verified with both complete data and incomplete data. The results show that compared with other methods, this methodology achieves encouraging diagnostic accuracy and effectiveness. This study provides a promising auxiliary tool for shale-gas sweet spot evaluation.
Keywords: oil and gas reservoir exploration; shale-gas; sweet-spot evaluation; DUCG (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2021
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
https://www.mdpi.com/1996-1073/14/17/5228/pdf (application/pdf)
https://www.mdpi.com/1996-1073/14/17/5228/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:14:y:2021:i:17:p:5228-:d:620547
Access Statistics for this article
Energies is currently edited by Ms. Agatha Cao
More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().