EconPapers    
Economics at your fingertips  
 

Influence of Torrefaction Temperature and Climatic Chamber Operation Time on Hydrophobic Properties of Agri-Food Biomass Investigated Using the EMC Method

Arkadiusz Dyjakon, Tomasz Noszczyk, Łukasz Sobol and Dominika Misiakiewicz
Additional contact information
Arkadiusz Dyjakon: Waste Biomass Valorization Group, Department of Applied Bioeconomy, Wroclaw University of Environmental and Life Sciences, 51-630 Wroclaw, Poland
Tomasz Noszczyk: Waste Biomass Valorization Group, Department of Applied Bioeconomy, Wroclaw University of Environmental and Life Sciences, 51-630 Wroclaw, Poland
Łukasz Sobol: Waste Biomass Valorization Group, Department of Applied Bioeconomy, Wroclaw University of Environmental and Life Sciences, 51-630 Wroclaw, Poland
Dominika Misiakiewicz: Faculty of Life Sciences and Technology, Wroclaw University of Environmental and Life Sciences, 51-630 Wroclaw, Poland

Energies, 2021, vol. 14, issue 17, 1-19

Abstract: Due to the tendency for excessive moisture adsorption by raw, unprocessed biomass, various methods of biomass valorization are in use, allowing for the improvement of physical–chemical biomass properties, including hydrophobicity. One of the methods is torrefaction, which changes the hydrophilic properties of the biomass to hydrophobic. Therefore, in this study, the influence of the torrefaction temperature and the exposure time to moisture adsorption conditions on the hydrophobic properties of waste biomass from the agri-food industry (lemon peel, mandarin peel, grapefruit peel, and butternut-squash peel) were analyzed. The torrefaction was carried out at the following temperatures: 200, 220, 240, 260, 280, 300, and 320 °C. The hydrophobic properties were determined by using the EMC (Equilibrium Moisture Content) method, conducting an experiment in the climatic chamber at atmospheric pressure, a temperature of 25 °C, and relative humidity of 80%. The total residence time of the material in the climate chamber was 24 h. It was shown that the torrefaction process significantly improves the hydrophobic properties of waste biomass. Concerning dried raw (unprocessed) material, the EMC (24 h) coefficient was 0.202 ± 0.004 for lemon peels, 0.223 ± 0.001 for grapefruit peels, 0.237 ± 0.004 for mandarin peels, and 0.232 ± 0.004 for butternut squash, respectively. After the torrefaction process, the EMC value decreased by 24.14–56.96% in relation to the dried raw material, depending on the type of organic waste. However, no correlation between the improvement of hydrophobic properties and increasing the torrefaction temperature was observed. The lowest values of the EMC coefficient were determined for the temperatures of 260 °C (for lemon peel, EMC = 0.108 ± 0.001; for mandarin peel, EMC = 0.102 ± 0.001), 240 °C (for butternut-squash peel, EMC = 0.176 ± 0.002), and 220 °C (for grapefruit peel, EMC = 0.114 ± 0.008). The experiment also showed a significant logarithmic trend in the dependence of the EMC coefficient on the operating time of the climatic chamber. It suggests that there is a limit of water adsorption by the material and that a further increase of the exposure time does not change this balance.

Keywords: agri-food residues; torrefaction; moisture adsorption; hydrophobicity; waste biomass valorization (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
https://www.mdpi.com/1996-1073/14/17/5299/pdf (application/pdf)
https://www.mdpi.com/1996-1073/14/17/5299/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:14:y:2021:i:17:p:5299-:d:622458

Access Statistics for this article

Energies is currently edited by Ms. Agatha Cao

More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jeners:v:14:y:2021:i:17:p:5299-:d:622458