EconPapers    
Economics at your fingertips  
 

Analysis of Expected Skin Burns from Accepted Process Flare Heat Radiation Levels to Public Passersby

Torgrim Log
Additional contact information
Torgrim Log: Chemistry and Biomedical Laboratory Sciences, Fire Disasters Research Group, Department of Safety, Western Norway University of Applied Sciences, 5528 Haugesund, Norway

Energies, 2021, vol. 14, issue 17, 1-16

Abstract: Hot flaring, even from quite high flare stacks, may result in significant heat radiation outside a facility to, e.g., public roads where random passersby may be exposed. The present study suggests a novel method for analyzing a typical flare heat radiation exposure and investigates skin burns that may be inflicted on an exposed person if a facility needs to depressurize in an emergency situation. A typical radiation field from an ignited natural gas vent was taken as the boundary condition, and these values were compared to radiation levels mentioned by the American Petroleum Institute (API 521), e.g., 1.58 kW/m 2 and above. Due to facility perimeter fences along roads in larger industry areas, it was assumed that an exposed person may flee along a road rather than in the ideal direction away from the flare. It was assumed that naked skin, e.g., a bare shoulder or a bald head is exposed. The Pennes bioheat equation was numerically solved for the skin layers while the person escapes along the road. Sun radiation and convective heat exchange to the ambient air were included, and the subsequent skin injury was calculated based on the temperature development in the basal layer. Parameters affecting burn severity, such as heat radiation, solar radiation, and convective heat transfer coefficient, were analyzed. For small flares and ignited small cold vents, no skin burn would be expected for 1.58 kW/m 2 or 3.16 kW/m 2 maximum heat radiation at the skin surface. However, higher flare rates corresponding to, e.g., 4.0 kW/m 2 maximum flare heat radiation to the skin, resulted both in higher basal layer temperatures and longer exposure time, thus increasing the damage integral significantly. It is demonstrated that the novel approach works well. In future studies, it may, e.g., be extended to cover escape through partly shielded escape routes.

Keywords: natural gas flaring; passersby; radiant heat exposure; skin burns; modeling (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2021
References: View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
https://www.mdpi.com/1996-1073/14/17/5474/pdf (application/pdf)
https://www.mdpi.com/1996-1073/14/17/5474/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:14:y:2021:i:17:p:5474-:d:627811

Access Statistics for this article

Energies is currently edited by Ms. Agatha Cao

More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jeners:v:14:y:2021:i:17:p:5474-:d:627811