All-SiC ANPC Submodule for an Advanced 1.5 kV EV Charging System under Various Modulation Methods
Rafał Kopacz,
Michał Harasimczuk,
Bartosz Lasek,
Rafał Miśkiewicz and
Jacek Rąbkowski
Additional contact information
Rafał Kopacz: Institute of Control and Industrial Electronics, Warsaw University of Technology, 00-662 Warsaw, Poland
Michał Harasimczuk: Institute of Control and Industrial Electronics, Warsaw University of Technology, 00-662 Warsaw, Poland
Bartosz Lasek: Institute of Control and Industrial Electronics, Warsaw University of Technology, 00-662 Warsaw, Poland
Rafał Miśkiewicz: Institute of Control and Industrial Electronics, Warsaw University of Technology, 00-662 Warsaw, Poland
Jacek Rąbkowski: Institute of Control and Industrial Electronics, Warsaw University of Technology, 00-662 Warsaw, Poland
Energies, 2021, vol. 14, issue 17, 1-16
Abstract:
This work is focused on the design and experimental validation of the all-SiC active neutral-point clamped (ANPC) submodule for an advanced electric vehicle (EV) charging station. The topology of the station is based on a three-wire bipolar DC bus (±750 V) connecting an ac grid converter, isolated DC-DC converters, and a non-isolated DC-DC converter with a battery energy storage. Thus, in all types of power converters, the same three-level submodule may be applied. In this paper, a submodule rated at 1/3 of the nominal power of the grid converter (20 kVA) is discussed. In particular, four different modulation strategies for the 1.5 kV ANPC submodule, exclusively employing fast silicon carbide (SiC) MOSFETs, are considered, and their impact on the submodule performance is analyzed. Moreover, the simulation study is included. Finally, the laboratory prototype is described and experimentally verified at a switching frequency of 64 kHz. It is shown that the system can operate with all of the modulations, while techniques PWM2 and PWM3 emerge as the most efficient, and alternating between them, depending on the load, should be considered to maximize the efficiency. Furthermore, the results showcase that the impact of the different PWM techniques on switching oscillations, including overvoltages, can be nearly fully omitted for a parasitic inductance optimized circuit, and the choice of modulation should be based on power loss and/or other factors.
Keywords: ANPC converter; EV charging; multilevel converter; PWM methods; SiC MOSFETs (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://www.mdpi.com/1996-1073/14/17/5580/pdf (application/pdf)
https://www.mdpi.com/1996-1073/14/17/5580/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:14:y:2021:i:17:p:5580-:d:630139
Access Statistics for this article
Energies is currently edited by Ms. Agatha Cao
More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().