EconPapers    
Economics at your fingertips  
 

Stress-Testing MQTT Brokers: A Comparative Analysis of Performance Measurements

Biswajeeban Mishra, Biswaranjan Mishra and Attila Kertesz
Additional contact information
Biswajeeban Mishra: Department of Software Engineering, University of Szeged, 6720 Szeged, Hungary
Biswaranjan Mishra: Wind River Systems International, 19/1, Vittal Mallya Road, 1st Floor, Bengaluru 560001, India
Attila Kertesz: Department of Software Engineering, University of Szeged, 6720 Szeged, Hungary

Energies, 2021, vol. 14, issue 18, 1-20

Abstract: Presently, Internet of Things (IoT) protocols are at the heart of Machine-to-Machine (M2M) communication. Irrespective of the radio technologies used for deploying an IoT/M2M network, all independent data generated by IoT devices (sensors and actuators) rely heavily on the special messaging protocols used for M2M communication in IoT applications. As the demand for IoT services is growing, the need for reduced power consumption of IoT devices and services is also growing to ensure a sustainable environment for future generations. The Message-Queuing Telemetry Transport or in short MQTT is a widely used IoT protocol. It is a low-resource-consuming messaging solution based on the publish–subscribe type communication model. This paper aims to assess the performance of several MQTT broker implementations (also known as MQTT servers) using stress testing, and to analyze their relationship with system design. The evaluation of the brokers is performed by a realistic test scenario, and the analysis of the test results is done with three different metrics: CPU usage, latency, and message rate. As the main contribution of this work, we analyzed six MQTT brokers (Mosquitto, Active-MQ, Hivemq, Bevywise, VerneMQ, and EMQ X) in detail, and classified them using their main properties. Our results showed that Mosquitto outperforms the other considered solutions in most metrics; however, ActiveMQ is the best performing one in terms of scalability due to its multi-threaded implementation, while Bevywise has promising results for resource-constrained scenarios.

Keywords: Internet of Things; messaging protocol; MQTT; MQTT brokers; performance evaluation; stress testing (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2021
References: View complete reference list from CitEc
Citations: View citations in EconPapers (3)

Downloads: (external link)
https://www.mdpi.com/1996-1073/14/18/5817/pdf (application/pdf)
https://www.mdpi.com/1996-1073/14/18/5817/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:14:y:2021:i:18:p:5817-:d:635392

Access Statistics for this article

Energies is currently edited by Ms. Agatha Cao

More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jeners:v:14:y:2021:i:18:p:5817-:d:635392