Load Sharing Scheme Incorporating Power Security Margins for Parallel Operation of Voltage Source Inverters
Chiebuka Eyisi and
Qifeng Li
Additional contact information
Chiebuka Eyisi: Department of Electrical and Computer Engineering, University of Central Florida, Orlando, FL 32816, USA
Qifeng Li: Department of Electrical and Computer Engineering, University of Central Florida, Orlando, FL 32816, USA
Energies, 2021, vol. 14, issue 18, 1-17
Abstract:
The interconnection of distributed energy resources (DERs) in microgrids (MGs) operating in both islanded and grid-connected modes require coordinated control strategies. DERs are interfaced with voltage source inverters (VSIs) enabling interconnection. This paper proposes a load demand sharing scheme for the parallel operation of VSIs in an islanded voltage source inverter-based microgrid (VSI-MG). The ride-through capability of a heavily loaded VSI-MG, where some of the VSIs are fully loaded due to the occurrence of an event is investigated. In developing analytical equations to model the VSI, the concept of virtual synchronous machines (VSM) is applied to enable the VSI mimic the inertia effect of synchronous machines. A power frame transformation (PFT) that takes the line ratios of the MG network into account is also incorporated to yield satisfactory transient responses of both network frequency and bus voltages in the MG network. A Jacobian-based method is then developed to take into account the operational capacity of each VSI in the VSI-MG. The resulting amendable droop control constrains the VSIs within their power capabilities when an event occurs. Simulation results presented within demonstrate the effectiveness of the proposed procedure which has great potential to facilitate efforts in maintaining system reliability and resiliency.
Keywords: AC microgrid; distributed energy resources; droop control; transient stability; power sharing; voltage source inverter (VSI); virtual synchronous machine (VSM); power frame transformation (PFT) (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://www.mdpi.com/1996-1073/14/18/5825/pdf (application/pdf)
https://www.mdpi.com/1996-1073/14/18/5825/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:14:y:2021:i:18:p:5825-:d:635712
Access Statistics for this article
Energies is currently edited by Ms. Agatha Cao
More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().