On the Suitability of Intrusion Detection System for Wireless Edge Networks
Vladimir Shakhov,
Olga Sokolova and
Insoo Koo
Additional contact information
Vladimir Shakhov: Department of Electrical and Computer Engineering, University of Ulsan, Ulsan 44610, Korea
Olga Sokolova: Institute of Computational Mathematics and Mathematical Geophysics, 630090 Novosibirsk, Russia
Insoo Koo: Department of Electrical and Computer Engineering, University of Ulsan, Ulsan 44610, Korea
Energies, 2021, vol. 14, issue 18, 1-13
Abstract:
Multi-access edge computing has become a strategic concept of the Internet of Things. The edge computing market has reached USD several billion and is growing intensively. In the edge-computing paradigm, most of the data is processed close to, or at the edge of, the network. This greatly reduces the computation and communication load of the network core. Moreover, edge computing provides better support for user privacy. On the other hand, an increase in data processing locations will proportionately increase the attack surface. An edge node can be put out of service easily by being flooded with spoofed packets owing to limited capacities and resources. Furthermore, wireless edge nodes are quite vulnerable to energy exhaustion attacks. In this situation, traditional network security mechanisms cannot be used effectively. Therefore, a tradeoff between security and efficiency is needed. This study considered the requirements under which the use of an intrusion detection system (IDS) is justified. To the best of our knowledge, this is a first attempt to combine IDS quality, system performance degradation due to IDS operations, and workload specificity into a unified quantitative criterion. This paper is an extended version of a report published in the proceedings of the ICCSA 2020 and differs from it in many ways. In particular, this paper considers novel mathematical problems regarding the deployment strategies for an IDS and the corresponding inverse problems and provides closed-form solutions for a few previously unsolved problems.
Keywords: edge computing; IoT devices; wireless communications; flooding attack; energy exhaustion attack; intrusion detection system (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://www.mdpi.com/1996-1073/14/18/5954/pdf (application/pdf)
https://www.mdpi.com/1996-1073/14/18/5954/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:14:y:2021:i:18:p:5954-:d:639120
Access Statistics for this article
Energies is currently edited by Ms. Agatha Cao
More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().