Collisions of Liquid Droplets in a Gaseous Medium under Conditions of Intense Phase Transformations: Review
Svetlana Kropotova and
Pavel Strizhak
Additional contact information
Svetlana Kropotova: Scientific and Educational Department of I.N. Butakova, Power Engineering School, National Research Tomsk Polytechnic University, 634050 Tomsk, Russia
Pavel Strizhak: Scientific and Educational Department of I.N. Butakova, Power Engineering School, National Research Tomsk Polytechnic University, 634050 Tomsk, Russia
Energies, 2021, vol. 14, issue 19, 1-27
Abstract:
The article presents the results of theoretical and experimental studies of coalescence, disruption, and fragmentation of liquid droplets in multiphase and multicomponent gas-vapor-droplet media. Highly promising approaches are considered to studying the interaction of liquid droplets in gaseous media with different compositions and parameters. A comparative analysis of promising technologies is carried out for the primary and secondary atomization of liquid droplets using schemes of their collision with each other. The influence of a range of factors and parameters on the collision processes of drops is analyzed, in particular, viscosity, density, surface, and interfacial tension of a liquid, trajectories of droplets in a gaseous medium, droplet velocities and sizes. The processes involved in the interaction of dissimilar droplets with a variable component composition and temperature are described. Fundamental differences are shown in the number and size of droplets formed due to binary collisions and collisions between droplets and particles at different Weber numbers. The conditions are analyzed for the several-fold increase in the number of droplets in the air flow due to their collisions in the disruption mode. A technique is described for generalizing and presenting the research findings on the interaction of drops in the form of theoretical collision regime maps using various approaches.
Keywords: liquid droplets; collisions; interaction regimes; secondary atomization; droplet breakup; combined atomization methods (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
https://www.mdpi.com/1996-1073/14/19/6150/pdf (application/pdf)
https://www.mdpi.com/1996-1073/14/19/6150/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:14:y:2021:i:19:p:6150-:d:644097
Access Statistics for this article
Energies is currently edited by Ms. Agatha Cao
More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().