EconPapers    
Economics at your fingertips  
 

Efficient Energy Management Based on Convolutional Long Short-Term Memory Network for Smart Power Distribution System

Faisal Mohammad, Mohamed A. Ahmed and Young-Chon Kim
Additional contact information
Faisal Mohammad: Department of Computer Engineering, Jeonbuk National University, Jeonju 561-756, Korea
Mohamed A. Ahmed: Department of Electronic Engineering, Universidad Técnica Federico Santa María, Valparaíso 2390123, Chile
Young-Chon Kim: Department of Computer Engineering, Jeonbuk National University, Jeonju 561-756, Korea

Energies, 2021, vol. 14, issue 19, 1-23

Abstract: An efficient energy management system is integrated with the power grid to collect information about the energy consumption and provide the appropriate control to optimize the supply–demand pattern. Therefore, there is a need for intelligent decisions for the generation and distribution of energy, which is only possible by making the correct future predictions. In the energy market, future knowledge of the energy consumption pattern helps the end-user to decide when to buy or sell the energy to reduce the energy cost and decrease the peak consumption. The Internet of things (IoT) and energy data analytic techniques have provided the convenience to collect the data from the end devices on a large scale and to manipulate all the recorded data. Forecasting an electric load is fairly challenging due to the high uncertainty and dynamic nature involved due to spatiotemporal pattern consumption. Existing conventional forecasting models lack the ability to deal with the spatio-temporally varying data. To overcome the above-mentioned challenges, this work proposes an encoder–decoder model based on convolutional long short-term memory networks (ConvLSTM) for energy load forecasting. The proposed architecture uses encode consisting of multiple ConvLSTM layers to extract the salient features in the data and to learn the sequential dependency and then passes the output to the decoder, having LSTM layers to make forecasting. The forecasting results produced by the proposed approach are favorably comparable to the existing state-of-the-art and better than the conventional methods with the least error rate. Quantitative analyses show that a mean absolute percentage error (MAPE) of 6.966% for household energy consumption and 16.81% for city-wide energy consumption is obtained for the proposed forecasting model in comparison with existing encoder–decoder-based deep learning models for two real-world datasets.

Keywords: energy load forecasting; energy management system; convolutional long short-term memory network; smart home energy management system; smart grid energy management system (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
https://www.mdpi.com/1996-1073/14/19/6161/pdf (application/pdf)
https://www.mdpi.com/1996-1073/14/19/6161/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:14:y:2021:i:19:p:6161-:d:644445

Access Statistics for this article

Energies is currently edited by Ms. Agatha Cao

More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jeners:v:14:y:2021:i:19:p:6161-:d:644445